• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 18
  • 5
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 90
  • 90
  • 90
  • 27
  • 23
  • 20
  • 18
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Implementation of a Coupled Creep Damage Model in MOOSE Finite Element Framework: Application to Irradiated Concrete Structures

January 2020 (has links)
abstract: There has been a renewed interest to understand the degradation mechanism of concrete under radiation as many nuclear reactors are reaching their expiration date. Much of the information on the degradation mechanism of concrete under radiation comes from the experiments, which are carried out on very small specimens. With the advent of finite element analysis, a numerical predictive tool is desired that can predict the extent of damage in the nuclear concrete structure. A mesoscale micro-structural framework is proposed in Multiphysics Object-Oriented Simulation Environment (MOOSE) finite element framework which represents the first step in this direction. As part of the framework, a coupled creep damage algorithm was developed and implemented in MOOSE. The algorithm considers creep through rheological models, while damage evolves exponentially as a function of elastic strain and creep strain. A characteristic length is introduced in the formulation such that the energy release rate associated with each element remains the same to avoid vanishing energy dissipation with mesh refinement. A creep damage parameter quantifies the effect of creep strain on the damage that was calibrated using three-point bending experiments with varying rates of loading. The creep damage model was also validated with restrained ring shrinkage tests on cementitious materials containing compliant/stiff inclusions subjected to variable drying conditions. The simulation approach explicitly considers: (i) moisture diffusion driven differential shrinkage along the depth of the specimen (ii) viscoelastic response of aging cementitious materials (iii) isotropic damage model with Rankine′s failure initiation criterion, and (iv) random distribution of tensile strengths of individual finite elements. The model was finally validated with experimental results on neutron-irradiated concrete. The simulation approach considers: (i) coupled hygro-thermal model to predict the temperature and humidity profile inside the specimen (ii) radiation-induced volumetric expansion of aggregates (RIVE) (iii) thermal, shrinkage and creep effects based on the temperature and humidity profile and (iv) isotropic damage model with Rankine’s criterion to determine failure initiation. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
62

Shear Fracture and Delamination in Packaging Materials : A study of Experimental Methods and Simulation Techniques

Islam, Md. Shafiqul January 2016 (has links)
Packages are the means of preservation, distribution and convenience of use for food, medicine and other consumer products. Package opening is becoming complicated in many cases because of cutting cost in design and production of opening techniques. Introduction of new package opening technique, material or geometry for better opening experience, forces new design measurements which require a large number of prototype developments and physical testing. In order to achieve more rapid and accurate design, Finite Element Method (FEM) Simulations are widely used in packaging industries to compliment and reduce the number of physical testing. The goal of this work is to develop the building blocks towards complete package opening simulation. The study focuses on testing and simulation of shear fracture and shear delamination of packaging materials. A modified shear test specimen was developed and optimized by finite element simulation. Test method was validated for High-density polyethylene (HDPE) and Polypropylene (PP). The developed method has been accepted by international standards organization ASTM. Based on linear elastic fracture mechanics, a geometry correction factor of shear fracture toughness for the proposed specimen was derived. The study concluded that, for ease of opening, HDPE is a more favorable material for screw caps than PP. When performing the experiment with the shear specimen to find essential work of fracture, the ligament length should be varied between twice of the thickness and half of the width of the specimen ligament. Multi-layered thin laminate of Low-density polyethylene (LDPE) and aluminum (Al), also known as Al/LDPE laminate, is another key object addressed in this study. Continuum and fracture testing of individual layers provided the base information and input for numerical modeling. The propagation of an interfacial pre-crack in lamination in Al-LDPE laminate was simulated using several numerical techniques available in the commercial FEM solver ABAQUS, and it was concluded that using the combination of VCCT technique to model the interfacial delamination and coupled elasto-plastic damage constitutive for Al and LDPE substrates can describe interfacial delamination and failure due to necking. It was also concluded that the delamination mode in a pre-crack tip is influenced by the ratio of fracture energy release rate of mode I and II. To address the challenge in quantifying shear energy release rate of laminate with very thin substrate, a convenient test technique is proposed. Additionally, scanning electron microscopic study provided useful information on fractured and delaminated surfaces and provided evidence that strengthened the conclusions of this work. The proposed test methods in this work will be crucial to measure the shear mechanical properties in bulk material and thin substrates. Laminates of Al and LDPE or similar material can be studied using the developed simulation technique which can be effectively used for decision support in early package development.
63

Truck tyre rolling resistance : Experimental testing and constitutive modelling of tyres

Hyttinen, Jukka January 2022 (has links)
Global warming sets a high demand to reduce the CO2 emissions of vehicles. In the European Union heavy-duty road transports account for 6 % of the total greenhouse gases and one of the main factors affecting these emissions is related to the rolling resistance of tyres. The optimal usage of tyres is an important part of solving these challenges, thereby it is important to understand the parameters affecting rolling resistance and the different compromises coupled to them. These compromises could be analysed using computational and experimental methods. To set out the groundwork necessary to minimise the energy consumption of trucks and assess the different parameters affecting tyre behaviour, the following studies have been conducted during this thesis. A framework to model and parametrise truck tyre rubber has been developed for finite element simulations. The presented parallel rheological material model utilises Mooney-Rivlin hyperelasticity, Prony series viscoelasticity, and perfectly plastic networks. A method to reduce tuneable parameters of the model, which significantly simplifies possible parameter studies, is presented. The model has been parametrised using test data from dynamic mechanical analysis of samples from a long haulage heavy truck tyre, and shows a good agreement with the test data. To test the suitability of the modelling technique for tyre simulations, the constitutive model is used in various tyre simulations using the arbitrary Lagrangian-Eulerian method. The material modelling technique is shown to work for static force-deflection as well as dynamic simulations estimating longitudinal force build-up with varying slip levels. Additionally, the modelling technique captures the uneven contact pressure in steady-state rolling, which indicates that the model could also be used in rolling resistance simulations. To study the change of ambient temperature on rolling resistance using experimental methods, a climate wind tunnel is used where the rolling resistance is quantified using a measurement drum. Tests were conducted between -30 °C and +25 °C, and a considerable ambient temperature dependency on rolling resistance was found. Moreover, temperature measurement inside a tyre shoulder is a good indicator for rolling resistance in a broad range of ambient temperatures. Finally, battery-electric long haulage truck driving range calculations are also conducted with varying rolling resistance and air density at different temperatures, showing a significant decrease of driving range with decreasing ambient temperature. / Den globala uppvärmningen ställer höga krav på att minska tunga fordons CO2-utsläpp. Tunga transporter står för 6 % av de totala växthusgaserna i Europeiska unionen och att fokusera på optimal användning av däck är en viktig del för att minska förorenande växthusgaser. Därför är det viktigt att förstå parametrar som påverkar rullmotståndet och olika kompromisser kopplade till dem. Dessa kompromisser skulle kunna analyseras med hjälp av beräkningsmetoder och experimentella metoder. För att lägga grunden för att minimera energiförbrukningen för lastbilar och bedöma olika parametrar som påverkar däckens beteende, har följande studier genomförts i denna avhandling. Ett ramverk för att modellera och parametrisera lastbilsdäcksgummi utvecklades för finita elementmetod-simuleringar. Den presenterade parallella reologiska materialmodellen använder Mooney-Rivlin hyperelasticitet, Prony-series viskoelasticitet och perfekt plastiska nätverk. En metod har utvecklats för att reducera antalet justerbara materialparametrar i modellen, vilket avsevärt förenklar möjliga parameterstudier. Modellen har parametriserats med hjälp av testdata från dynamisk mekanisk analys och visar en god överensstämmelse mellan testdata och simuleringar. Provstavarna skars ut från ett lastbilsdäck för tunga fordon. För att testa modelleringsteknikens lämplighet användes den konstitutiva modellen i olika däcksimuleringar. Materialmodelleringstekniken har visat sig fungera för statisk vertikalstyvhet såväl som dynamiska simuleringar som uppskattar longitudinell kraftgenerering med varierande slipnivåer och olika friktionskoefficienter. Modelleringstekniken fångar ojämnt kontakttryck vid stationär rullning, vilket indikerar att modellen även kan användas i simuleringar av rullmotstånd. För att studera omgivningstemperaturens inverkan på rullmotståndet med experimentella metoder användes en klimatvindtunnel. Tester utfördes mellan -30 °C och +25 °C och rullmotståndet bestämdes med en mättrumma. Ett avsevärt beroende av omgivningstemperaturen på rullmotståndet påvisades. Dessutom indikerade provningen att temperaturmätning inuti däckskuldran är en bra indikator för rullmotstånd i ett brett område av omgivningstemperaturer. Räckviddsberäkningar för en elektrisk fjärrtransportlastbil utfördes med varierande rullmotstånd och luftdensitet vid olika temperaturer, vilket visade en signifikant minskning av körräckvidden med sjunkande omgivningstemperatur. / <p>QC 220525</p>
64

Thermal Transport Properties Enhancement of Phase Change Material by Using Boron Nitride Nanomaterials for Efficient Thermal Management

Barhemmati Rajab, Nastaran 12 1900 (has links)
In this research thermal properties enhancement of phase change material (PCM) using boron nitride nanomaterials such as nanoparticles and nanotubes is studied through experimental measurements, finite element method (FEM) through COMSOL 5.3 package and molecular dynamics simulations via equilibrium molecular dynamics simulation (EMD) with the Materials and Process Simulations (MAPS 4.3). This study includes two sections: thermal properties enhancement of inorganic salt hydrate (CaCl2∙6H2O) as the phase change material by mixing boron nitride nanoparticles (BNNPs), and thermal properties enhancement of organic phase change material (paraffin wax) as the phase change material via encapsulation into boron nitride nanotubes (BNNTs). The results of the proposed research will contribute to enhance the thermal transport properties of inorganic and organic phase change material applying nanotechnology for increasing energy efficiency of systems including electronic devices, vehicles in cold areas to overcome the cold start problem, thermal interface materials for efficient heat conduction and spacecraft in planetary missions for efficient thermal managements.
65

Process chain simulation of forming, welding and heat treatment of Alloy 718

Steffenburg-Nordenström, Joachim January 2017 (has links)
Manufacturing of aero engine components requires attention to residual stress and final shape of the product in order to meet high quality product standards.This sets very high demands on involved manufacturing steps to meet design requirements. Simulation of manufacturing processes can therefore be animportant tool to contribute to quality assurance.The focus in this work is on simulation of a manufacturing process chain comprising of sheet metal forming, welding and a stress relief heat treatment.Simulation of sheet metal forming can be used to design a forming tool design that accounts for the material behaviour, e.g. spring back, and avoid problems such as wrinkling, thinning and cracking. Moreover, the simulation can also show how the material is stretched and work hardened. The residual stresses after forming may be of local character or global depending on the shape that is formed. However, the heat affected zone due to welding is located near the weld.The weld also causes large residual stresses with the major component along the weld. It is found that the magnitude of the residual stresses after welding is affected by remaining stresses from the previous sheet metal forming. The final stress relieve treatment will relax these residual stresses caused by e.g. forming and welding. However, this causes additional deformations.The main focus of this study is on how a manufacturing process step affects the subsequent step when manufacturing a component of the nickel-based super alloy 718. The chosen route and geometry is a simplified leading edge of an exhaust case guide vane. The simulations were validated versus experiments. The computed deformations were compared with measurements after each manufacturing step. The overall agreement between experiments and measurement was good. However, not sufficiently accurate considering the required tolerance of the component. It was found from simulations that the residual stresses after each process affects the subsequent step. After a complete manufacturing process chain which ends with a stress relief heat treatment the residual stresses were not negligible. VIII Special experiments were performed for studying the stress relief in order to understand how the stresses evolve through the heat treatment cycle during relaxation. It was found that the stresses were reduced already during the beginning of the heating up sequence due to decreasing Young´s modulus and yield stress with increasing temperature. Relaxation due to creep starts when a certain temperature was reached which gave a permanent stress relief.
66

Material Characterization and Forming of Light Weight Alloys at Elevated Temperature

Shah, Manan Kanti 29 July 2011 (has links)
No description available.
67

Calibrating Constitutive Models Using Data-Driven Method : Material Parameter Identification for an Automotive Sheet Metal

Haller, Anton, Fridström, Nicke January 2024 (has links)
The automotive industry is reliant on accurate finite element simulations for developing new parts or machines and to achieve this, accurate material models are essential. Material cards contain input about the material model, and are significant; however, time-consuming to calibrate with traditional methods. Therefore a newer method involving Machine Learning (ML) and Feed-Forward Neural Networks (FFNN) is studied in the thesis. The direct application of calibration with FFNN has never been applied to calibrate the Swift hardening law and Barlat yield 2000 criteria, which is done in this thesis. All steps for calibration are performed to achieve a high-fidelity database capable of training the FFNN. The outline of the thesis involves four different phases; experiments, simulations, building the high-fidelity database, and building and optimizing the FFNN. The experiment phase involves tensile testing of three different types of specimens in three material directions with Digital Image Correlation (DIC) to capture local strain. The simulation phase is to replicate all the experiments in LS-DYNA and perform finite element simulation. The finite element models are simulated 100 times and, respectively, 1000 times with different material parameters within a specific range. This range has a lower and upper bound that covers the experimental results. The database phase involves extracting the data from a huge amount of simulations and then extracting the key characteristics from the force-displacement curve. The last phase is building the FFNN and optimizing the network to find the best parameters. It’s first optimized based on Root Mean Square Error (RMSE) and then points from the Swift hardening curve and Barlat yield 2000 criteria are compared with experimental points. The result shows that the FFNN with the high-fidelity database can predict material parameters with an accuracy of over 99 % for the hardening law at the points chosen for optimization and the anisotropy parameters are optimized to 97 % accuracy for the yielding points and Lankford coefficients. The thesis concludes that the FFNN can accurately predict the material parameters with real experimental data. The effectiveness of using this method is significantly faster than traditional methods because only one type of test is needed. / Bilindustrin är beroende av trovärdiga och noggranna finita element simuleringar för utveckling av nya komponenter eller maskiner, och för det behövs noggranna materialmodeller. Materialkort innehåller information om materialmodellerna och är av stor betydelse, men är tidskrävande att kalibrera med traditionella metoder. Därför är en ny metod som involverar Maskininlärning (ML) och Feed-Forward Neurala Nätverk (FFNN) undersökt i avhandlingen. Applikationen av att kalibrera med FFNN har aldrig blivit undersökt för ”Swift hardening law” och anisotropi kriteriet ”Barlat yield 2000”. Alla steg för att kalibrera materialet är utförda för att uppnå en högkvalitativ databas som är kapabel att träna ett FFNN. Arbetets översikt involverar fyra faser som är; experiment, simulationer, databasensuppbyggnad och utvecklingen samt optimeringen av FFNN. Experimentfasen involverar dragprov för tre olika geometrier i tre materialriktningar tillsammans med Digital Image Correlation (DIC) för att fånga lokala töjningspunkter. Simulationsfasen går ut på att replikera experimentfasen genom finita element simuleringar i LS-DYNA. Finita element modellerna är simulerade 100 respektive 1000 gånger med olika materialparametrar inom ett specifikt intervall med en övre och undre gräns som ska täcka experimentdatan. Databasfasen handlar om att extrahera data från de massiva antalet simuleringar och extrahera nyckelbeteenden från kraft-förflyttningskurvan. Den sista fasen är att bygga FFNN och optimera för att hitta bästa möjliga parametrar. Det är först optimerat baserat på Root Mean Squared Error (RMSE) och sedan punkter från Swift härdningskurvan och beteenden genererat från Barlat yield 2000 som är jämförda med experimentella värden som Lankfordkoefficienter och sträckgränser för rullningsriktningarna. Resultatet visar att ett FFNN med en högkvalitiativ databas kan estimera materialparametrar med en noggrannhet över 99 % för härdningskurvan för jämförelsepunkterna och med en 97 % noggrannhet för anisotropipunkterna som Lankfordkoefficienter och sträckgränser i rullningsriktningarna. Exjobbet avslutas med att dra slutsatsen att FFNN kan estimera riktiga materialparametrar med en viss noggrannhet. Effektiviteten av att använda metoden är betydligt snabbare än traditionella metoder eftersom det endast tar några sekunder att estimera parametrarna när datan är extraherad och enbart en typ av test behövs.
68

Piezoelektrische Aluminiumnitrid-Dünnschichten für mikroelektromechanische Systeme

Stöckel, Chris 13 December 2016 (has links) (PDF)
In der vorliegenden Arbeit werden der Entwurf, die Technologie und die Parameteridentifikation von Silizium basierten mikroelektromechanischen Systemen (MEMS) mit piezoelektrischen Dünnschicht-Aluminiumnitrid (AlN) vorgestellt. Auf Basis des AlNs als elektromechanischer Wandler erfolgt die Fertigung eines MEMS Technologiedemonstrators für energiearme Inertialsensoren. Das AlN wird über einen reaktiven Sputterprozess auf einer Wachstumsschicht abgeschieden. Durch Parametervariation des reaktiven Sputterprozesses und der Wachstumsschicht werden die piezoelektrischen Eigenschaften des AlNs optimiert. Die Entwicklung einer Gesamttechnologie führt zu einer Integration des Dünnschicht-AlNs in Silizium-Mikromechaniken. Die Röntgenbeugung (XRD) ermöglicht die Kristallstruktur des AlNs zu qualifizieren. Darüber hinaus werden weitere Analysemethoden vorgestellt, die eine hoch genaue und reproduzierbare messtechnische Bestimmung der piezoelektrischen Koeffizienten aus mikromechanischen Messstrukturen ermöglichen. Die Determination der piezoelektrischen Koeffizienten des Dünnschicht-AlNs aus den Messstrukturen erfolgt mittels analytischen und FE Modellen sowie der Laser-Doppler-Vibrometrie (LDV). Der Fokus der Arbeit liegt hierbei auf der Identifikation der longitudinalen und transversalen piezoelektrischen Ladungskoeffizienten des AlNs. Als Technologiedemonstrator wird ein einachsiger Inertialsensor mit integriertem piezoelektrischen Dünnschicht-AlN vorgestellt. Das MEMS generiert aufgrund des piezoelektrischen Wandlers intrinsisch elektrische Ladungen bei Einwirkung einer mechanischen Energie. Dadurch ist keine elektrische Energiezufuhr für die Messung eines inertialen Ereignisses notwendig. Der vorgestellte Demonstrator wird hinsichtlich seiner Ladungs- und Spannungssensitivität optimiert. Zur theoretischen Beschreibung der Funktionsweise werden analytische, sowie FE und SPICE Modelle genutzt. Eine Charakterisierung des MEMS Bauelements erfolgt hinsichtlich der mechanischen und elektrischen Eigenschaften. / The thesis includes the design, the technology and the parameter identification of silicon-based microelectromechanical systems (MEMS) with piezoelectric thin film of aluminum nitride (AlN). A low-energy inertial sensor as technology demonstrator based on AlN as an electromechanical transducer a MEMS manufacturing process is shown. The AlN is deposited via a reactive sputtering on a growth layer. By varying parameters of the reactive sputtering and the growth layer of AlN, the piezoelectric properties can be optimized. The development of an overall technology results to an integration of the thin film AlNs in silicon micromechanics. X-ray diffraction (XRD) allows to qualify the crystal structure of AlN. Further methods are developed that enable a highly accurate and repeatable metrological determination of piezoelectric coefficients measurement structures. The determination of piezoelectric coefficients of the thin film AlN from the measurement structures is resulting from analytical methods and FE models and the laser Doppler vibrometry (LDV). The identification of the longitudinal and transverse piezoelectric charge coefficient of AlN is one main focus of this work. A uniaxial inertial sensor with an integrated piezoelectric thin film of AlN is presented as technology demonstrator. The piezoelectric transducer of the MEMS is generating electric charges intrinsically as reaction of mechanical stress. Thus, no electric power supply for the measurement of an inertial event is necessary. The presented demonstrator has been optimized with respect to its charge and voltage sensitivity. For a theoretical description analytical and FE and SPICE models are used. A characterization of the MEMS device is carried out with regard to the mechanical and electrical properties.
69

Piezoelektrische Aluminiumnitrid-Dünnschichten für mikroelektromechanische Systeme

Stöckel, Chris 17 October 2016 (has links)
In der vorliegenden Arbeit werden der Entwurf, die Technologie und die Parameteridentifikation von Silizium basierten mikroelektromechanischen Systemen (MEMS) mit piezoelektrischen Dünnschicht-Aluminiumnitrid (AlN) vorgestellt. Auf Basis des AlNs als elektromechanischer Wandler erfolgt die Fertigung eines MEMS Technologiedemonstrators für energiearme Inertialsensoren. Das AlN wird über einen reaktiven Sputterprozess auf einer Wachstumsschicht abgeschieden. Durch Parametervariation des reaktiven Sputterprozesses und der Wachstumsschicht werden die piezoelektrischen Eigenschaften des AlNs optimiert. Die Entwicklung einer Gesamttechnologie führt zu einer Integration des Dünnschicht-AlNs in Silizium-Mikromechaniken. Die Röntgenbeugung (XRD) ermöglicht die Kristallstruktur des AlNs zu qualifizieren. Darüber hinaus werden weitere Analysemethoden vorgestellt, die eine hoch genaue und reproduzierbare messtechnische Bestimmung der piezoelektrischen Koeffizienten aus mikromechanischen Messstrukturen ermöglichen. Die Determination der piezoelektrischen Koeffizienten des Dünnschicht-AlNs aus den Messstrukturen erfolgt mittels analytischen und FE Modellen sowie der Laser-Doppler-Vibrometrie (LDV). Der Fokus der Arbeit liegt hierbei auf der Identifikation der longitudinalen und transversalen piezoelektrischen Ladungskoeffizienten des AlNs. Als Technologiedemonstrator wird ein einachsiger Inertialsensor mit integriertem piezoelektrischen Dünnschicht-AlN vorgestellt. Das MEMS generiert aufgrund des piezoelektrischen Wandlers intrinsisch elektrische Ladungen bei Einwirkung einer mechanischen Energie. Dadurch ist keine elektrische Energiezufuhr für die Messung eines inertialen Ereignisses notwendig. Der vorgestellte Demonstrator wird hinsichtlich seiner Ladungs- und Spannungssensitivität optimiert. Zur theoretischen Beschreibung der Funktionsweise werden analytische, sowie FE und SPICE Modelle genutzt. Eine Charakterisierung des MEMS Bauelements erfolgt hinsichtlich der mechanischen und elektrischen Eigenschaften. / The thesis includes the design, the technology and the parameter identification of silicon-based microelectromechanical systems (MEMS) with piezoelectric thin film of aluminum nitride (AlN). A low-energy inertial sensor as technology demonstrator based on AlN as an electromechanical transducer a MEMS manufacturing process is shown. The AlN is deposited via a reactive sputtering on a growth layer. By varying parameters of the reactive sputtering and the growth layer of AlN, the piezoelectric properties can be optimized. The development of an overall technology results to an integration of the thin film AlNs in silicon micromechanics. X-ray diffraction (XRD) allows to qualify the crystal structure of AlN. Further methods are developed that enable a highly accurate and repeatable metrological determination of piezoelectric coefficients measurement structures. The determination of piezoelectric coefficients of the thin film AlN from the measurement structures is resulting from analytical methods and FE models and the laser Doppler vibrometry (LDV). The identification of the longitudinal and transverse piezoelectric charge coefficient of AlN is one main focus of this work. A uniaxial inertial sensor with an integrated piezoelectric thin film of AlN is presented as technology demonstrator. The piezoelectric transducer of the MEMS is generating electric charges intrinsically as reaction of mechanical stress. Thus, no electric power supply for the measurement of an inertial event is necessary. The presented demonstrator has been optimized with respect to its charge and voltage sensitivity. For a theoretical description analytical and FE and SPICE models are used. A characterization of the MEMS device is carried out with regard to the mechanical and electrical properties.
70

Untersuchung von akustischen Strömungen im kHz- und GHz-Bereich / Observation of acoustic streaming in the kHz- and GHz-range

Nowak, Till 23 January 2014 (has links)
Bei Einkopplung von Schall in ein Fluid können durch nichtlineare Effekte und Dämpfung Strömungen erzeugt werden. Diese Strömungen, die ihre Energie aus einem Impulsübertrag der Schallwelle auf die Flüssigkeit beziehen, werden akustische Strömungen genannt (engl.: acoustic streaming). Dieser Impulsübertrag hängt u.a von der Dämpfung der Schallwelle im Medium ab: bei stärkerer Dämpfung nimmt der Impulsübertrag zu und entsprechend die Geschwindigkeit der induzierten Strömung. Eine wichtige Rolle in der vorgelegten Arbeit spielt die Dämpfungserhöhung im Fall in der Flüssigkeit vorhandener Blasen. Dies ist insbesondere bei allen Prozessen von großer Bedeutung, in denen durch intensive (Ultra-)Schallfelder die Blasen in der Flüssigkeit selbst erzeugt werden (akustische Kavitation). Hier entstehen durch die mit den Blasen verbundene Dissipation sehr viel größere akustische Strömungsgeschwindigkeiten als im Fall ohne Kavitation. Zudem werden durch die Volumenoszillation und die Translation der Kavitationsblasen weitere Strömungen auf Skala der Blasengröße induziert. Mit einem in der Arbeit neu entwickelten Versuchsaufbau lassen sich Strömungen auf größeren und mittleren Skalen bis zu einzelnen Blasen in akustischen Kavitationsblasenfeldern abbilden und untersuchen. Durch die Farbtrennung eines speziellen Fluoreszenzmikroskopes ist es möglich, die Flüssigkeitsströmungen und die Kavitationsblasen simultan und getrennt aufzunehmen. Die Abhängigkeit der akustischen Strömungen von verschiedenen Einflussparametern wie Schallleistung, Temperatur und Gasgehalt der Flüssigkeit werden am Beispielfall einer bei 17 kHz betriebenen Ultraschall-Sonotrode (Schallhorn) in Wasser untersucht. Insbesondere der Übergang vom nicht kavitierenden zum kavitierenden Fall ist hier von Interesse, was durch die Möglichkeit eines statischen Überdrucks im Experiment gut beeinflusst werden kann. Es zeigt sich wie erwartet mit dem Einsetzen von Kavitation eine starke Zunahme der akustischen Strömungsgeschwindigkeiten, woraus auf den stark erhöhten Dämpfungskoeffizienten für Schallausbreitung geschlossen werden kann. Ebenfalls werden die sehr schnellen Mikroströmungen auf Blasenebene dokumentiert. Eine genauere Analyse ergibt auch das Auftreten von subharmonischem Verhalten bei Blasendynamik und Strömungsfeld. An speziellen Ultraschallwandlern werden zudem die rein akustischen Strömungen (ohne Auftreten von Kavitation) bei extremen, bisher für Dickenschwinger nicht erreichbaren Schallfrequenzen bis zu 2 GHz in Wasser experimentell untersucht. Hierzu wird ebenfalls der Fluoreszenz-Aufbau verwendet, Es zeigen sich relativ hohe Strömungsgeschwindigkeiten in Form eines vom Wandler weggerichteten Jets, der sich auch weit jenseits der Eindringtiefe des Schalls in die Flüssigkeit erstreckt. Dieses Verhalten wird ebenfalls numerisch mit einer Finite-Elemente-Methode modelliert. Hier wird neben ausführlichen, aber sehr zeitaufwändigen Rechnungen auch erfolgreich eine vereinfachte Simulation der akustischen Strömungen in dem betrachteten Fall sehr hoher Frequenz angewandt.

Page generated in 0.1724 seconds