81 |
Time-Resolved Adaptive Finite Element Simulations for Building Aerodynamics : A proof of concept on minimal computational resources / Tidsupplösta adaptiva finita elementsimuleringar för byggnadsaerodynamik : Ett koncepttest med minimala beräkningsresurservan Beers, Linde January 2021 (has links)
The effect of building geometry on the wind environment of cities is such that it can cause problems like wind danger, discomfort and poor ventilation of airborne pollutants. Computational fluid dynamics (CFD) can play a role in assessing changes in wind environment caused by building projects before realisation at little cost. However, the current state-of-the-art methods, RANS and LES, force a steep trade-off between accuracy and computational cost, and neither method is truly predictive. Time-resolved adaptive direct finite element simulation (DFS) is a method for CFD that is predictive and automatically optimises the mesh for a goal quantity, making it both efficient and accurate. In this thesis, DFS was implemented in FEniCS and used on basic validation cases to provide a proof of concept for the use of this method in the building aerodynamics, on resources freely available to anyone. The results show that the method is accurate to within 10% of the validation data with respect to the goal quantity. Visually, the expected flow features are clearly identifiable. DFS was successfully applied to a relatively complicated building geometry, with a total computation time of about 120 core-hours. We conclude that DFS has significant potential as a method for evaluating urban wind environments. Furthermore, because of its ease of use and lack of parameters, DFS can play an important role in helping architects, designers and students understand the effect of urban geometries on the wind environment. This report provides a basis for further research on DFS for building aerodynamics, as validation on more diverse urban geometries is still necessary. / Effekten av byggnaders form och geometri är så viktig att den kan ge problem för ventilation av t.ex. föroreningar, för energieffektivitet, och för vindfaror med t.ex. hög vindhastihet som kan vara farligt eller skapa obehag. Beräkningsströmningsdynamik (CFD) kan ha en roll i bedömningen av byggnadsprojekt i ett tidigt skede till liten kostnad. Dock är de etablerade och ledande metodikerna, RANS och LES, inte prediktiva och tvingar fram en kompromiss mellan beräkningskosnad och noggrannhet. Vår metodik “Time-resolved adaptive direct finite element simulation” (DFS) är en metod för CFD som är prediktiv och automatiskt optimerar beräkningsnätet (och därmed beräkningskostnaden) för en given målkvantitet, som ger både effektivitet och noggrannhet. I denna avhandling implementerades DFS i FEniCS och användes i grundläggande valideringsfall för att ge ett proof of conceptför användning av denna metod i byggnadsaerodynamik, på resurser som är fritt tillgängliga för alla. Resultaten visar att metoden är korrekt inom 10% av valideringsdata med avseende på målkvantiteten. Visuellt är de förväntade flödesfunktionerna tydligt identifierbara. DFS applicerades framgångsrikt på en relativt komplicerad byggnadsgeometri med en total beräkningstid på cirka 120 kärntimmar, vilket är en försumbar kostnad. Vi drar slutsatsen att DFS har en betydande potential som metod för utvärdering av stadsvindmiljöer. Dessutom, på grund av dess användarvänlighet och frihet från parametrar, kan DFS spela en viktig roll för att hjälpa arkitekter, designers och studenter att förstå effekterna av stadsgeometrier på vindmiljön. Denna rapport ger en grund för vidare forskning om DFS för aerodynamik, eftersom validering av mer olika stadsgeometrier fortfarande är nödvändig.
|
82 |
Comparison of two mesh-moving techniques for finite element simulations of galvanic corrosionHarzheim, Sven, Hofmann, Martin, Wallmersperger, Thomas 16 May 2024 (has links)
Galvanic corrosion is a destructive process between dissimilar metals. The present paper presents a constructed numerical test case to simulate galvanic corrosion of two dissimilar metals. This test case is used to study the accuracy of different implementations to track the dissolving anode boundary. One technique is to numerically simulate a mesh displacement based on the prescribed displacement at the anode boundary. The second method is to adjust only the boundary elements. Re-meshing after a certain number of time steps is applied to both implementations. They produce similar results for an electrical and electrochemical field problem. This work shows that mesh smoothing does not result in higher accuracy when modeling a moving anode front. Adjusting only the boundary elements is sufficient when frequent re-meshing is used.
|
83 |
Modeling and simulation of diffusion and reaction processes during the staining of tissue sections on slidesMenning, Johannes D. M., Wallmersperger, Thomas, Meinhardt, Matthias, Ehrenhofer, Adrian 22 May 2024 (has links)
Histological slides are an important tool in the diagnosis of tumors as well as of other diseases that affect cell shapes and distributions. Until now, the research concerning an optimal staining time has been mainly done empirically. In experimental investigations, it is often not possible to stain an already-stained slide with another stain to receive further information. To overcome these challenges, in the present paper a continuum-based model was developed for conducting a virtual (re-)staining of a scanned histological slide. This model is capable of simulating the staining of cell nuclei with the dye hematoxylin (C.I. 75,290). The transport and binding of the dye are modeled (i) along with the resulting RGB intensities (ii). For (i), a coupled diffusion–reaction equation is used and for (ii) Beer–Lambert’s law. For the spatial discretization an approach based on the finite element method (FEM) is used and for the time discretization a finite difference method (FDM). For the validation of the proposed model, frozen sections from human liver biopsies stained with hemalum were used. The staining times were varied so that the development of the staining intensity could be observed over time. The results show that the model is capable of predicting the staining process. The model can therefore be used to perform a virtual (re-)staining of a histological sample. This allows a change of the staining parameters without the need of acquiring an additional sample. The virtual standardization of the staining is the first step towards universal cross-site comparability of histological slides.
|
84 |
Electronic and Magnetic Properties of the Fe/GaAs(110) InterfaceIffländer, Tim 30 October 2015 (has links)
No description available.
|
85 |
Mesure de déformation et cristallinité à l'échelle nanométrique par diffraction électronique en mode précession / investigation of nano crystalline materials strain and structure using high spatial resolution precession electron diffractionVigouroux, Mathieu Pierre 11 May 2015 (has links)
La diffraction électronique en mode précession (PED) est une méthode récente d’acquisition de clichésde diffraction permettant de minimiser les interactions dynamiques. L’objectif de cette thèse est dedévelopper une méthodologie d’acquisition et de traitement des clichés de diffraction en modeprécession afin de mesurer les champs de déformation en combinant une résolution spatialenanométrique et une sensibilité inférieure à 10-3 typiquement obtenues par d’autres techniques usuellesde microscopie, telle que l’imagerie haute-résolution. Les mesures ont été réalisées sur un JEOL 2010Aéquipé du module de précession Digistar produit par la société Nanomegas.Un système modèle constitué de multicouches Si/SiGe de concentrations connues en Ge a été utilisépour évaluer les performances de la méthodologie développée dans cette thèse. Les résultats indiquentune sensibilité sur la mesure de contraintes qui atteint, au mieux, 1x10-4 et un accord excellent avec lescontraintes simulées par éléments finis. Cette nouvelle méthode a pu ensuite être appliquée sur despuits quantique d’InGaAs et sur des transistors de type Ω−gate.La dernière partie traite d’un nouvel algorithme permettant d’évaluer de manière robuste et rapide lapolycristallinité des matériaux à partir d’une mesure PED. Nous donnons des exemples d’applicationde cette méthode sur divers dispositifs / Precession electron diffraction (PED) is a recent technique used to minimize acquired diffractionpatterns dynamic effects. The primary intention of this PhD work is to improve PED (PrecessionElectron Diffraction) data analysis and treatment methodologies in order to measure the strain at thenanoscale. The strain measurement is intended to reach a 10-3 strain precision as well as usualmicroscopy techniques like high-resolution imaging. To this end, measurements were made with aJEOL 2010A with a Digistar Nanomegas precession module.The approach developed has been used and tested by measuring the strain in a Si/SiGe multilayeredreference sample with a known Ge Content. Strain measurements reached 1x10-4 sensitivity withexcellent finite element strain simulation agreement. This process has been also applied to measure thestrain in microelectronic InGaAs Quantum Well and an "Ω-gate" experimental transistor devices.The second approach developed has been made to provide a robust means of studying electrontransparent nanomaterial polycrystallinity with precession. Examples of applications of this analysismethod are shown on different devices.
|
86 |
Innovative Tessellation Algorithm for Generating More Uniform Temperature Distribution in the Powder-bed Fusion ProcessEhsan Maleki Pour (5931092) 16 January 2019 (has links)
<div>Powder Bed Fusion Additive Manufacturing enables the fabrication of metal parts with complex geometry and elaborates internal features, the simplication of the assembly process, and the reduction of development time. However, the lack of consis-tent quality hinders its tremendous potential for widespread application in industry. This limits its ability as a viable manufacturing process particularly in the aerospace and medical industries where high quality and repeatability are critical. A variety of defects, which may be initiated during the powder-bed fusion additive manufacturing process, compromise the repeatability, precision, and resulting mechanical properties of the final part. The literature review shows that a non-uniform temperature distribution throughout fabricated layers is a signicant source of the majority of thermal defects. Therefore, the work introduces an online thermography methodology to study temperature distribution, thermal evolution, and thermal specications of the fabricated layers in powder-bed fusion process or any other thermal inherent AM process. This methodology utilizes infrared technique and segmentation image processing to extract the required data about temperature distribution and HAZs of the layer under fabrication. We conducted some primary experiments in the FDM process to leverage the thermography technique and achieve a certain insight to be able to propose a technique to generate a more uniform temperature distribution. These experiments lead to proposing an innovative chessboard scanning strategy called tessellation algorithm, which can generate more uniform temperature distribution and diminish the layer warpage consequently especially throughout the layers with either geometry that is more complex or poses relatively longer dimensions. In the next step, this work develops a new technique in ABAQUS to verify the proposed scanning strategy. This technique simulates temperature distribution throughout a layer printed by chessboard printing patterns in powder-bed fusion process in a fraction of the time taken by current methods in the literature. This technique compares the temperature distribution throughout a designed layer printed by three presented chessboard-scanning patterns, namely, rastering pattern, helical pattern, and tessellation pattern. The results conrm that the tessellation pattern generates more uniform temperature distribution compared with the other two patterns. Further research is in progress to leverage the thermography methodology to verify the simulation technique. It is also pursuing a hybrid closed-loop online monitoring (OM) and control methodology, which bases on the introduced tessellation algorithm and online thermography in this work and Articial Neural Networking (ANN) to generate the most possible uniform temperature distribution within a safe temperature range layer-by-layer.</div>
|
87 |
Mesure de déformation et cristallinité à l'échelle nanométrique par diffraction électronique en mode précession / investigation of nano crystalline materials strain and structure using high spatial resolution precession electron diffractionVigouroux, Mathieu 11 May 2015 (has links)
La diffraction électronique en mode précession (PED) est une méthode récente d’acquisition de clichésde diffraction permettant de minimiser les interactions dynamiques. L’objectif de cette thèse est dedévelopper une méthodologie d’acquisition et de traitement des clichés de diffraction en modeprécession afin de mesurer les champs de déformation en combinant une résolution spatialenanométrique et une sensibilité inférieure à 10-3 typiquement obtenues par d’autres techniques usuellesde microscopie, telle que l’imagerie haute-résolution. Les mesures ont été réalisées sur un JEOL 2010Aéquipé du module de précession Digistar produit par la société Nanomegas.Un système modèle constitué de multicouches Si/SiGe de concentrations connues en Ge a été utilisépour évaluer les performances de la méthodologie développée dans cette thèse. Les résultats indiquentune sensibilité sur la mesure de contraintes qui atteint, au mieux, 1x10-4 et un accord excellent avec lescontraintes simulées par éléments finis. Cette nouvelle méthode a pu ensuite être appliquée sur despuits quantique d’InGaAs et sur des transistors de type Ω−gate.La dernière partie traite d’un nouvel algorithme permettant d’évaluer de manière robuste et rapide lapolycristallinité des matériaux à partir d’une mesure PED. Nous donnons des exemples d’applicationde cette méthode sur divers dispositifs / Precession electron diffraction (PED) is a recent technique used to minimize acquired diffractionpatterns dynamic effects. The primary intention of this PhD work is to improve PED (PrecessionElectron Diffraction) data analysis and treatment methodologies in order to measure the strain at thenanoscale. The strain measurement is intended to reach a 10-3 strain precision as well as usualmicroscopy techniques like high-resolution imaging. To this end, measurements were made with aJEOL 2010A with a Digistar Nanomegas precession module.The approach developed has been used and tested by measuring the strain in a Si/SiGe multilayeredreference sample with a known Ge Content. Strain measurements reached 1x10-4 sensitivity withexcellent finite element strain simulation agreement. This process has been also applied to measure thestrain in microelectronic InGaAs Quantum Well and an "Ω-gate" experimental transistor devices.The second approach developed has been made to provide a robust means of studying electrontransparent nanomaterial polycrystallinity with precession. Examples of applications of this analysismethod are shown on different devices.
|
88 |
Identification de la variabilité spatiale des champs de contraintes dans les agrégats polycristallins et application à l'approche locale de la rupture / Identification of the spatial variability of stress fields in polycrystalline aggregates and application to the local approach to failureDang, Xuan Hung 11 October 2012 (has links)
Cette thèse est une contribution à la construction de l’Approche Locale de la rupture à l’échelle microscopique à l’aide de la modélisation d’agrégats polycristallins. Elle consiste à prendre en compte la variabilité spatiale de la microstructure du matériau. Pour ce faire, la modélisation micromécanique du matériau est réalisée par la simulation d’agrégats polycristallins par éléments finis. Les champs aléatoires de contrainte (principale maximale et de clivage) dans le matériau qui représentent la variabilité spatiale de la microstructure sont ensuite modélisés par un champ aléatoire gaussien stationnaire ergodique. Les propriétés de variabilité spatiale de ces champs sont identifiés par une méthode d’identification, e.g. méthode du périodogramme, méthode du variogramme, méthode du maximum de vraisemblance. Des réalisations synthétiques des champs de contraintes sont ensuite simulées par une méthode de simulation, e.g. méthode Karhunen-Loève discrète, méthode “Circulant Embedding”, méthode spectrale, sans nouveau calcul aux éléments finis. Enfin, le modèle d’Approche Locale de la rupture par simulation de champ de contrainte de clivage permettant d’y intégrer les réalisations simulées du champ est construit pour estimer la probabilité de rupture du matériau. / This thesis is a contribution to the construction of the Local Approach to fracture at the microscopic scale using polycrystalline aggregate modeling. It consists in taking into account the spatial variability of the microstructure of the material. To do this, the micromechanical modeling is carried out by finite element analysis of polycrystalline aggregates. The random stress fields (maximum principal et cleavage stress) in the material representing the spatial variability of the microstructure are then modeled by a stationary ergodic Gaussian random field. The properties of the spatial variability of these fields are identified by an identification method, e.g. periodogram method, variogram method, maximum likelihood method. The synthetic realizations of the stress fields are then simulated by a simulation method, e.g. discrete Karhunen-Loève method, circulant embedding method, spectral method, without additional finite element calculations. Finally, a Local Approach to fracture by simulation of the cleavage stress field using the simulated realizations is constructed to estimate the rupture probability of the material.
|
89 |
Rôle de la microstructure d'un alliage à durcissement structural sur son comportement et sa tenue mécanique sous sollicitations cycliques après un transitoire thermique / Influence of the microstructure of an age hardening alloy on its cyclic mechanical behaviour after transient heat treatmentsBardel, Didier 28 May 2014 (has links)
Pour fabriquer le caisson-coeur du futur réacteur expérimental Jules Horowitz (RJH), un assemblage de viroles est effectué à l'aide d'un procédé haute énergie : le soudage par faisceau d'électrons (FE). L'aluminium 6061-T6 qui a été choisi pour la fabrication de ces viroles est un alliage à durcissement structural, ce qui signifie que ses propriétés mécaniques sont très fortement dépendantes de son état de précipitation. Lors du soudage des viroles, l'état microstructural du matériau est affecté : on assiste notamment à une dégradation de l'état fin de précipitation (T6). Les conséquences de cette dégradation microstructurale sont diverses. Notamment, l'évolution de l'état de précipitation au cours du soudage engendre une variation du comportement mécanique et impactera donc la distribution des contraintes résiduelles. De plus, les propriétés mécaniques en service à proximité du joint soudé seront grandement modifiées, on assiste par exemple à une chute de la limite d'élasticité. Dans ce travail, des essais cycliques ont été effectués après des chargements thermiques représentatifs d'une opération de soudage mais aussi pendant des essais isothermes. L'analyse de ces résultats et la confrontation à des mesures de Diffusion de Neutrons aux Petits Angles (DNPA) et de Microscopie Electronique en Transmission (MET) permettent de comprendre les effets de la précipitation sur la loi de comportement de l'alliage. Afin de prédire les évolutions microstructurales et mécaniques dans l'alliage 6061, un logiciel de précipitation a été implémenté et couplé à un modèle élastoplastique à base physique. Les résultats obtenus permettent de représenter la grande variété de comportement observé lors de la campagne expérimentale. Un couplage entre simulation éléments finis thermique et précipitation a été effectué et permet d'ouvrir des perspectives de simulations plus physiques pour ce type d'alliage. / In order to assemble the pressure vessel of experimental Reactor Jules Horowitz (RJH) of France in the future, the electron beam welding process will be used. Several ferrules in a 6061-T6 age hardening aluminum alloy are used for manufacturing this vessel. The fine precipitation state (T6) is affected significantly by the electron beam welding process. Consequently, this microstructural degradation leads to an evolution of the mechanical behaviour and thus will affect the distribution of residual stresses. Moreover, the mechanical properties of the weld joint at ambiant temperature can be modified, such as the yield stress that may drop from 280 MPa to 55 MPa. In this work, cyclic tensile tests have been performed after anisothermal histories representative of welding and during isothermal treatments. The analysis of these results is compared with Small Angles Neutrons Scattering (SANS) and Transmission Electron Microscopy (TEM) characterizations that allow to understand the effect of the precipitation on the material behaviour. To predict the microstructural evolutions in the 6061 structure, a precipitation model has been developped. The precipitation software "PreciSo" coupled with a Finite Element thermal simulations and elastoplastic models allows to open new prospectives in the physical-based simulations domain.
|
90 |
Innovative Tessellation Algorithm for Generating More Uniform Temperature Distribution in the Powder-bed Fusion ProcessMaleki Pour, Ehsan 12 1900 (has links)
Purdue School of Engineering and Technology, Indianapolis / Powder Bed Fusion Additive Manufacturing enables the fabrication of metal parts with complex geometry and elaborates internal features, the simplification of the assembly process, and the reduction of development time. However, the lack of consistent quality hinders its tremendous potential for widespread application in industry. This limits its ability as a viable manufacturing process particularly in the aerospace and medical industries where high quality and repeatability are critical. A variety of defects, which may be initiated during the powder-bed fusion additive manufacturing process, compromise the repeatability, precision, and resulting mechanical properties of the final part. The literature review shows that a non-uniform temperature distribution throughout fabricated layers is a significant source of the majority of thermal defects. Therefore, the work introduces an online thermography methodology to study temperature distribution, thermal evolution, and thermal specifications of the fabricated layers in powder-bed fusion process or any other thermal inherent AM process. This methodology utilizes infrared technique and segmentation image processing to extract the required data about temperature distribution and HAZs of the layer under fabrication. We conducted some primary experiments in the FDM process to leverage the thermography technique and achieve a certain insight to be able to propose a technique to generate a more uniform temperature distribution. These experiments lead to proposing an innovative chessboard scanning strategy called tessellation algorithm, which can generate more uniform temperature distribution and diminish the layer warpage consequently especially throughout the layers with either geometry that is more complex or poses relatively longer dimensions. In the next step, this work develops a new technique in ABAQUS to verify the proposed scanning strategy. This technique simulates temperature distribution throughout a layer printed by chessboard printing patterns in powder-bed fusion process in a fraction of the time taken by current methods in the literature. This technique compares the temperature distribution throughout a designed layer printed by three presented chessboard-scanning patterns, namely, rastering pattern, helical pattern, and tessellation pattern. The results confirm that the tessellation pattern generates more uniform temperature distribution compared with the other two patterns. Further research is in progress to leverage the thermography methodology to verify the simulation technique. It is also pursuing a hybrid closed-loop online monitoring and control methodology, which bases on the introduced tessellation algorithm and online thermography in this work and Artificial Neural Networking (ANN) to generate the most possible uniform temperature distribution within a safe temperature range layer-by-layer.
|
Page generated in 0.1574 seconds