1 |
The Efficient Computation of Bounds for Functionals of Finite Element Solutions in Large Strain ElasticityBonet, J., Huerta, A., Peraire, Jaime 01 1900 (has links)
We present an implicit a-posteriori finite element procedure to compute bounds for functional outputs of finite element solutions in large strain elasticity. The method proposed relies on the existence of a potential energy functional whose local minima, over a space of suitably chosen continuous functions, corresponds to the problem solution. The output of interest is cast as a constrained minimization problem over an enlarged discontinuous finite element space. A Lagrangian is formed were the multipliers are an adjoint solution, which enforces equilibrium, and hybrid fluxes, which constrain the solution to be continuous. By computing approximate values for the multipliers on a coarse mesh, strict upper and lower bounds for the output of interest on a suitably refined mesh, are obtained. This requires a minimization over a discontinuous space, which can be carried out locally at low cost. The computed bounds are uniformly valid regardless of the size of the underlying coarse discretization. The method is demonstrated with two applications involving large strain plane stress incompressible neo-hookean hyperelasticity. / Singapore-MIT Alliance (SMA)
|
2 |
Finite Element Solutions to Nonlinear Partial Differential EquationsBeasley, Craig J. (Craig Jackson) 08 1900 (has links)
This paper develops a numerical algorithm that produces finite element solutions for a broad class of partial differential equations. The method is based on steepest descent methods in the Sobolev space H¹(Ω). Although the method may be applied in more general settings, we consider only differential equations that may be written as a first order quasi-linear system. The method is developed in a Hilbert space setting where strong convergence is established for part of the iteration. We also prove convergence for an inner iteration in the finite element setting. The method is demonstrated on Burger's equation and the Navier-Stokes equations as applied to the square cavity flow problem. Numerical evidence suggests that the accuracy of the method is second order,. A documented listing of the FORTRAN code for the Navier-Stokes equations is included.
|
Page generated in 0.1238 seconds