• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 27
  • 8
  • 7
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 152
  • 28
  • 28
  • 26
  • 25
  • 24
  • 21
  • 19
  • 16
  • 16
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Ein Beitrag zur Modellierung versetzungs- und verformungsinduzierter plastischer Lokalisierungsphänomene metallischer Werkstoffe

Silbermann, Christian B. 30 April 2020 (has links)
Die vorliegende Arbeit beschäftigt sich mit Festkörperkontinuumsmechanik und Metall- bzw. Kristallplastizität auf verschiedenen Längenskalen. Diesbezüglich besteht die Arbeit aus drei größeren Teilen. Im ersten Teil werden Verformungsvorgänge mit expliziter FEM (Finite-Elemente-Methode) und einem makroskopischen phänomenologischen Modell der Viskoplastizität simuliert. Hierbei wird sich auf das Gleichkanalwinkelpressen (ECAP) eines Metallbarrens und die Stauchung einer sogenannten Crashbox konzentriert. In beiden Fällen gelingt es, die im Experiment bereits beobachtete Lokalisierung der Verformung korrekt wiederzugeben. Da bei den Simulationen die konkrete Mikrostruktur des Materials vernachlässigt wird, werden diese Lokalisierungsphänomene als verformungsinduziert angesehen. Der zweite Teil beschäftigt sich mit der Erweiterung des viskoplastischen Modells, sodass mikroskopische Vorgänge der Gitterdefektstruktur des Materials berücksichtigt werden können. Dazu wird ein Modell des dynamischen Verhaltens von Versetzungspopulationen entwickelt und an das makroskopische viskoplastische Modell gekoppelt. Auf diese Weise können Aspekte der sogenannten Kornfeinung – einem komplexen Strukturbildungsprozess von Versetzungen und anderen Gitterdefekten – erfasst werden. Allerdings kann die für die makroskopischen Eigenschaften entscheidende Bildung von Subkorngrenzen auf diese Weise nicht abgebildet werden. Um dies zu erreichen, wird im dritten Teil der Arbeit eine mesoskopische Theorie der Kristallplastizität mit kontinuierlich verteilten Versetzungen verwendet und weiterentwickelt. Hierbei werden die für eine Subkornbildung wesentlichen Freiheitsgrade hinzugenommen, die Anzahl phänomenologischer Ansätze und zugehöriger Materialparameter aber so klein wie möglich gehalten. Mit dieser Kontinuumsversetzungstheorie (KVT) gelingt es, die Bildung von Subkorngrenzen bei großen plastischen Verformungen eines Kristallits zu verfolgen. Bei den impliziten FEM-Simulationen wird ebenfalls eine Lokalisierung beobachtet, allerdings in Bezug auf die Aktivität der Versetzungen in verschiedenen Gleitebenen. Dementsprechend wird dieses Lokalisierungsphänomen als versetzungsinduziert angesehen. Der Beitrag der vorliegenden Arbeit liegt zum einen in der Aufarbeitung und Gegenüberstellung unterschiedlicher methodischer Herangehensweisen zur Modellierung verformungs- und versetzungsinduzierter Lokalisierungsphänomene. Zum anderen wird eine Analyse und Vereinheitlichung der geometrisch linearen KVT nach Berdichevsky & Le vorgenommen. Wie sich dabei zeigt, verhindern inhärente kinematische Einschränkungen der Theorie die Simulation einer Subkornbildung. Aus diesem Grund wird die konsistente geometrisch nichtlineare KVT von Gurtin aufgegriffen und erweitert. Mit einem daraus abgeleiteten elastisch und plastisch anisotropen Modell der Einkristallviskoplastizität wird der Nachweis erbracht, dass die Subkornbildung damit simuliert werden kann. Darüber hinaus wird eine Aufbereitung und Synthese von Algorithmen zur numerischen Lösung der zugehörigen Feldgleichungen mittels der Methode der finiten Differenzen und der finiten Elemente geliefert. Zudem werden beide Näherungsverfahren in Bezug auf Vor- und Nachteile sowie thermodynamische Konsistenz bei der Anwendung auf Mehrfeldprobleme miteinander verglichen. / The present thesis deals with solid continuum mechanics applied to metal and crystal plasticity on different length scales. In this respect, the work consists of three larger parts. In the first part, deformation processes are simulated with explicit FEM (Finite Element Method) and a macroscopic phenomenological model of viscoplasticity. Here the focus is on the Equal-Channel Angular Pressing (ECAP) of a metal billet and the compression of a so-called crash box. In both cases it is possible to correctly reproduce the localization of the deformation as already observed in the experiment. Since the concrete microstructure of the material is neglected in the simulations, these localization phenomena are regarded as deformation-induced. The second part deals with the extension of the viscoplastic model so that microscopic processes of the lattice defect structure of the material can be considered. A model of the dynamic behavior of dislocation populations is developed and coupled to the macroscopic viscoplastic model. In this way, aspects of the so-called grain refinement – a complex structure formation process of dislocations and other lattice defects – can be captured. However, the formation of subgrain boundaries, which is decisive for the macroscopic properties, cannot be predicted in this way. To achieve this, a mesoscopic theory of crystal plasticity with continuously distributed dislocations is used and further developed in the third part of the thesis. Here, the degrees of freedom essential for subgrain formation are added, while the number of phenomenological approaches and associated material parameters are kept as small as possible. With this continuum dislocation theory it is possible to follow the formation of subgrain boundaries during large plastic deformations of a crystallite. In the implicit FEM simulations, localization is also observed, but with respect to the dislocation activity in different slip planes. Accordingly, this localization phenomenon is considered dislocation-induced. The contribution of the present work lies on the one hand in the review and comparison of different methodical approaches to the modeling of deformation- and dislocation-induced localization phenomena. On the other hand, an analysis and unification of the geometrically linear continuum dislocation theory according to Berdichevsky & Le is carried out. As it turns out, inherent kinematic limitations of the theory prevent the simulation of subgrain formation. For this reason the consistent geometrically non-linear continuum dislocation theory from Gurtin is adopted and extended. With the derived model of elastically and plastically anisotropic single crystal viscoplasticity it is proven that subgrain formation can be simulated. Moreover, a preparation and synthesis of algorithms for the numerical solution of the associated field equations using the method of finite differences and finite elements is provided. In addition, both approximation methods are compared in terms of advantages and disadvantages as well as thermodynamic consistency when applied to multi-field problems.
152

Patient-Derived Tumour Growth Modelling from Multi-Parametric Analysis of Combined Dynamic PET/MR Data

Martens, Corentin 03 March 2021 (has links) (PDF)
Gliomas are the most common primary brain tumours and are associated with poor prognosis. Among them, diffuse gliomas – which include their most aggressive form glioblastoma (GBM) – are known to be highly infiltrative. The diagnosis and follow-up of gliomas rely on positron emission tomography (PET) and magnetic resonance imaging (MRI). However, these imaging techniques do not currently allow to assess the whole extent of such infiltrative tumours nor to anticipate their preferred invasion patterns, leading to sub-optimal treatment planning. Mathematical tumour growth modelling has been proposed to address this problem. Reaction-diffusion tumour growth models, which are probably the most commonly used for diffuse gliomas growth modelling, propose to capture the proliferation and migration of glioma cells by means of a partial differential equation. Although the potential of such models has been shown in many works for patient follow-up and therapy planning, only few limited clinical applications have seemed to emerge from these works. This thesis aims at revisiting reaction-diffusion tumour growth models using state-of-the-art medical imaging and data processing technologies, with the objective of integrating multi-parametric PET/MRI data to further personalise the model. Brain tissue segmentation on MR images is first addressed with the aim of defining a patient-specific domain to solve the model. A previously proposed method to derive a tumour cell diffusion tensor from the water diffusion tensor assessed by diffusion-tensor imaging (DTI) is then implemented to guide the anisotropic migration of tumour cells along white matter tracts. The use of dynamic [S-methyl-11C]methionine ([11C]MET) PET is also investigated to derive patient-specific proliferation potential maps for the model. These investigations lead to the development of a microscopic compartmental model for amino acid PET tracer transport in gliomas. Based on the compartmental model results, a novel methodology is proposed to extract parametric maps from dynamic [11C]MET PET data using principal component analysis (PCA). The problem of estimating the initial conditions of the model from MR images is then addressed by means of a translational MRI/histology study in a case of non-operated GBM. Numerical solving strategies based on the widely used finite difference and finite element methods are finally implemented and compared. All these developments are embedded within a common framework allowing to study glioma growth in silico and providing a solid basis for further research in this field. However, commonly accepted hypothesis relating the outlines of abnormalities visible on MRI to tumour cell density iso-contours have been invalidated by the translational study carried out, leaving opened the questions of the initialisation and the validation of the model. Furthermore, the analysis of the temporal evolution of real multi-treated glioma patients demonstrates the limitations of the formulated model. These latter statements highlight current obstacles to the clinical application of reaction-diffusion tumour growth models and pave the way to further improvements. / Les gliomes sont les tumeurs cérébrales primitives les plus communes et sont associés à un mauvais pronostic. Parmi ces derniers, les gliomes diffus – qui incluent la forme la plus agressive, le glioblastome (GBM) – sont connus pour être hautement infiltrants. Le diagnostic et le suivi des gliomes s'appuient sur la tomographie par émission de positons (TEP) ainsi que l'imagerie par résonance magnétique (IRM). Cependant, ces techniques d'imagerie ne permettent actuellement pas d'évaluer l'étendue totale de tumeurs aussi infiltrantes ni d'anticiper leurs schémas d'invasion préférentiels, conduisant à une planification sous-optimale du traitement. La modélisation mathématique de la croissance tumorale a été proposée pour répondre à ce problème. Les modèles de croissance tumorale de type réaction-diffusion, qui sont probablement les plus communément utilisés pour la modélisation de la croissance des gliomes diffus, proposent de capturer la prolifération et la migration des cellules tumorales au moyen d'une équation aux dérivées partielles. Bien que le potentiel de tels modèles ait été démontré dans de nombreux travaux pour le suivi des patients et la planification de thérapies, seules quelques applications cliniques restreintes semblent avoir émergé de ces derniers. Ce travail de thèse a pour but de revisiter les modèles de croissance tumorale de type réaction-diffusion en utilisant des technologies de pointe en imagerie médicale et traitement de données, avec pour objectif d'y intégrer des données TEP/IRM multi-paramétriques pour personnaliser davantage le modèle. Le problème de la segmentation des tissus cérébraux dans les images IRM est d'abord adressé, avec pour but de définir un domaine propre au patient pour la résolution du modèle. Une méthode proposée précédemment permettant de dériver un tenseur de diffusion tumoral à partir du tenseur de diffusion de l'eau évalué par imagerie DTI a ensuite été implémentée afin de guider la migration anisotrope des cellules tumorales le long des fibres de matière blanche. L'utilisation de l'imagerie TEP dynamique à la [S-méthyl-11C]méthionine ([11C]MET) est également investiguée pour la génération de cartes de potentiel prolifératif propre au patient afin de nourrir le modèle. Ces investigations ont mené au développement d'un modèle compartimental pour le transport des traceurs TEP dérivés des acides aminés dans les gliomes. Sur base des résultats du modèle compartimental, une nouvelle méthodologie est proposée utilisant l'analyse en composantes principales pour extraire des cartes paramétriques à partir de données TEP dynamiques à la [11C]MET. Le problème de l'estimation des conditions initiales du modèle à partir d'images IRM est ensuite adressé par le biais d'une étude translationelle combinant IRM et histologie menée sur un cas de GBM non-opéré. Différentes stratégies de résolution numérique basées sur les méthodes des différences et éléments finis sont finalement implémentées et comparées. Tous ces développements sont embarqués dans un framework commun permettant d'étudier in silico la croissance des gliomes et fournissant une base solide pour de futures recherches dans le domaine. Cependant, certaines hypothèses communément admises reliant les délimitations des anormalités visibles en IRM à des iso-contours de densité de cellules tumorales ont été invalidée par l'étude translationelle menée, laissant ouverte les questions de l'initialisation et de la validation du modèle. Par ailleurs, l'analyse de l'évolution temporelle de cas réels de gliomes multi-traités démontre les limitations du modèle. Ces dernières affirmations mettent en évidence les obstacles actuels à l'application clinique de tels modèles et ouvrent la voie à de nouvelles possibilités d'amélioration. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.3458 seconds