• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal concentration for SU(1,1) coherent state transforms and an analogue of the Lieb-Wehrl conjecture for SU(1,1)

Bandyopadhyay, Jogia 30 June 2008 (has links)
We derive a lower bound for the Wehrl entropy in the setting of SU(1,1). For asymptotically high values of the quantum number k, this bound coincides with the analogue of the Lieb-Wehrl conjecture for SU(1,1) coherent states. The bound on the entropy is proved via a sharp norm bound. The norm bound is deduced by using an interesting identity for Fisher information of SU(1,1) coherent state transforms on the hyperbolic plane and a new family of sharp Sobolev inequalities on the hyperbolic plane. To prove the sharpness of our Sobolev inequality, we need to first prove a uniqueness theorem for solutions of a semi-linear Poisson equation (which is actually the Euler-Lagrange equation for the variational problem associated with our sharp Sobolev inequality) on the hyperbolic plane. Uniqueness theorems proved for similar semi-linear equations in the past do not apply here and the new features of our proof are of independent interest, as are some of the consequences we derive from the new family of Sobolev inequalities. We also prove Fisher information identities for the groups SU(n,1) and SU(n,n).

Page generated in 0.126 seconds