• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicação de máquinas de vetor de suporte e modelos auto-regressivos de média móvel na classificação de sinais eletromiográficos. / Application of support vector machines and autoregressive moving average models in electromyography signal classification.

Barretto, Mateus Ymanaka 10 December 2007 (has links)
O diagnóstico de doenças neuromusculares é feito pelo uso conjunto de várias ferramentas. Dentre elas, o exame de eletromiografia clínica fornece informações vitais ao diagnóstico. A aplicação de alguns classificadores (discriminante linear e redes neurais artificiais) aos diversos parâmetros dos sinais de eletromiografia (número de fases, de reversões e de cruzamentos de zero, freqüência mediana, coeficientes auto-regressivos) tem fornecido resultados promissores na literatura. No entanto, a necessidade de um número grande de coeficientes auto-regressivos direcionou este mestrado ao uso de modelos auto-regressivos de média móvel com um número menor de coeficientes. A classificação (em normal, neuropático ou miopático) foi feita pela máquina de vetor de suporte, um tipo de rede neural artificial de uso recente. O objetivo deste trabalho foi o de estudar a viabilidade do uso de modelos auto-regressivos de média móvel (ARMA) de ordem baixa, em vez de auto-regressivos de ordem alta, em conjunção com a máquina de vetor de suporte, para auxílio ao diagnóstico. Os resultados indicam que a máquina de vetor de suporte tem desempenho melhor que o discriminante linear de Fisher e que os modelos ARMA(1,11) e ARMA(1,12) fornecem altas taxas de classificação (81,5%), cujos valores são próximos ao máximo obtido com modelos auto-regressivos de ordem 39. Portanto, recomenda-se o uso da máquina de vetor de suporte e de modelos ARMA (1,11) ou ARMA(1,12) para a classificação de sinais de eletromiografia de agulha, de 800ms de duração e amostrados a 25kHz. / The diagnosis of neuromuscular diseases is attained by the combined use of several tools. Among these tools, clinical electromyography provides key information to the diagnosis. In the literature, the application of some classifiers (linear discriminant and artificial neural networks) to a variety of electromyography parameters (number of phases, turns and zero crossings; median frequency, auto-regressive coefficients) has provided promising results. Nevertheless, the need of a large number of auto-regressive coefficients has guided this Master\'s thesis to the use of a smaller number of auto-regressive moving-average coefficients. The classification task (into normal, neuropathic or myopathic) was achieved by support vector machines, a type of artificial neural network recently proposed. This work\'s objective was to study if low-order auto-regressive moving-average (ARMA) models can or cannot be used to substitute high-order auto-regressive models, in combination with support vector machines, for diagnostic purposes. Results point that support vector machines have better performance than Fisher linear discriminants. They also show that ARMA(1,11) and ARMA(1,12) models provide high classification rates (81.5%). These values are close to the maximum obtained by using 39 auto-regressive coefficients. So, we recommend the use of support vector machines and ARMA(1,11) or ARMA(1,12) to the classification of 800ms needle electromyography signals acquired at 25kHz.
2

Aplicação de máquinas de vetor de suporte e modelos auto-regressivos de média móvel na classificação de sinais eletromiográficos. / Application of support vector machines and autoregressive moving average models in electromyography signal classification.

Mateus Ymanaka Barretto 10 December 2007 (has links)
O diagnóstico de doenças neuromusculares é feito pelo uso conjunto de várias ferramentas. Dentre elas, o exame de eletromiografia clínica fornece informações vitais ao diagnóstico. A aplicação de alguns classificadores (discriminante linear e redes neurais artificiais) aos diversos parâmetros dos sinais de eletromiografia (número de fases, de reversões e de cruzamentos de zero, freqüência mediana, coeficientes auto-regressivos) tem fornecido resultados promissores na literatura. No entanto, a necessidade de um número grande de coeficientes auto-regressivos direcionou este mestrado ao uso de modelos auto-regressivos de média móvel com um número menor de coeficientes. A classificação (em normal, neuropático ou miopático) foi feita pela máquina de vetor de suporte, um tipo de rede neural artificial de uso recente. O objetivo deste trabalho foi o de estudar a viabilidade do uso de modelos auto-regressivos de média móvel (ARMA) de ordem baixa, em vez de auto-regressivos de ordem alta, em conjunção com a máquina de vetor de suporte, para auxílio ao diagnóstico. Os resultados indicam que a máquina de vetor de suporte tem desempenho melhor que o discriminante linear de Fisher e que os modelos ARMA(1,11) e ARMA(1,12) fornecem altas taxas de classificação (81,5%), cujos valores são próximos ao máximo obtido com modelos auto-regressivos de ordem 39. Portanto, recomenda-se o uso da máquina de vetor de suporte e de modelos ARMA (1,11) ou ARMA(1,12) para a classificação de sinais de eletromiografia de agulha, de 800ms de duração e amostrados a 25kHz. / The diagnosis of neuromuscular diseases is attained by the combined use of several tools. Among these tools, clinical electromyography provides key information to the diagnosis. In the literature, the application of some classifiers (linear discriminant and artificial neural networks) to a variety of electromyography parameters (number of phases, turns and zero crossings; median frequency, auto-regressive coefficients) has provided promising results. Nevertheless, the need of a large number of auto-regressive coefficients has guided this Master\'s thesis to the use of a smaller number of auto-regressive moving-average coefficients. The classification task (into normal, neuropathic or myopathic) was achieved by support vector machines, a type of artificial neural network recently proposed. This work\'s objective was to study if low-order auto-regressive moving-average (ARMA) models can or cannot be used to substitute high-order auto-regressive models, in combination with support vector machines, for diagnostic purposes. Results point that support vector machines have better performance than Fisher linear discriminants. They also show that ARMA(1,11) and ARMA(1,12) models provide high classification rates (81.5%). These values are close to the maximum obtained by using 39 auto-regressive coefficients. So, we recommend the use of support vector machines and ARMA(1,11) or ARMA(1,12) to the classification of 800ms needle electromyography signals acquired at 25kHz.
3

Face Detection And Active Robot Vision

Onder, Murat 01 September 2004 (has links) (PDF)
The main task in this thesis is to design a robot vision system with face detection and tracking capability. Hence there are two main works in the thesis: Firstly, the detection of the face on an image that is taken from the camera on the robot must be achieved. Hence this is a serious real time image processing task and time constraints are very important because of this reason. A processing rate of 1 frame/second is tried to be achieved and hence a fast face detection algorithm had to be used. The Eigenface method and the Subspace LDA (Linear Discriminant Analysis) method are implemented, tested and compared for face detection and Eigenface method proposed by Turk and Pentland is decided to be used. The images are first passed through a number of preprocessing algorithms to obtain better performance, like skin detection, histogram equalization etc. After this filtering process the face candidate regions are put through the face detection algorithm to understand whether there is a face or not in the image. Some modifications are applied to the eigenface algorithm to detect the faces better and faster. Secondly, the robot must move towards the face in the image. This task includes robot motion. The robot to be used for this purpose is a Pioneer 2-DX8 Plus, which is a product of ActivMedia Robotics Inc. and only the interfaces to move the robot have been implemented in the thesis software. The robot is to detect the faces at different distances and arrange its position according to the distance of the human to the robot. Hence a scaling mechanism must be used either in the training images, or in the input image taken from the camera. Because of timing constraint and low camera resolution, a limited number of scaling is applied in the face detection process. With this reason faces of people who are very far or very close to the robot will not be detected. A background independent face detection system is tried to be designed. However the resultant algorithm is slightly dependent to the background. There is no any other constraints in the system.
4

A BAYESIAN EVIDENCE DEFINING SEARCH

Kim, Seongsu 25 June 2015 (has links)
No description available.
5

Infrared face recognition

Lee, Colin K. 06 1900 (has links)
Approved for public release, distribution is unlimited / This study continues a previous face recognition investigation using uncooled infrared technology. The database developed in an earlier study is further expanded to include 50 volunteers with 30 facial images from each subject. The automatic image reduction method reduces the pixel size of each image from 160 120 to 60 45 . The study reexamines two linear classification methods: the Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (LDA). Both PCA and LDA apply eigenvectors and eigenvalues concepts. In addition, the Singular Value Decomposition based Snapshot method is applied to decrease the computational load. The K-fold Cross Validation is applied to estimate classification performances. Results indicate that the best PCA-based method (using all eigenvectors) produces an average classification performance equal to 79.22%. Incorporated with PCA for dimension reduction, the LDA-based method achieves 94.58% accuracy in average classification performance. Additional testing on unfocused images produces no significant impact on the overall classification performance. Overall results again confirm uncooled IR imaging can be used to identify individual subjects in a constrained indoor environment. / Lieutenant, United States Navy
6

PMU-Based Applications for Improved Monitoring and Protection of Power Systems

Pal, Anamitra 07 May 2014 (has links)
Monitoring and protection of power systems is a task that has manifold objectives. Amongst others, it involves performing data mining, optimizing available resources, assessing system stresses, and doing data conditioning. The role of PMUs in fulfilling these four objectives forms the basis of this dissertation. Classification and regression tree (CART) built using phasor data has been extensively used in power systems. The splits in CART are based on a single attribute or a combination of variables chosen by CART itself rather than the user. But as PMU data consists of complex numbers, both the attributes, should be considered simultaneously for making critical decisions. An algorithm is proposed here that expresses high dimensional, multivariate data as a single attribute in order to successfully perform splits in CART. In order to reap maximum benefits from placement of PMUs in the power grid, their locations must be selected judiciously. A gradual PMU placement scheme is developed here that ensures observability as well as protects critical parts of the system. In order to circumvent the computational burden of the optimization, this scheme is combined with a topology-based system partitioning technique to make it applicable to virtually any sized system. A power system is a dynamic being, and its health needs to be monitored at all times. Two metrics are proposed here to monitor stress of a power system in real-time. Angle difference between buses located across the network and voltage sensitivity of buses lying in the middle are found to accurately reflect the static and dynamic stress of the system. The results indicate that by setting appropriate alerts/alarm limits based on these two metrics, a more secure power system operation can be realized. A PMU-only linear state estimator is intrinsically superior to its predecessors with respect to performance and reliability. However, ensuring quality of the data stream that leaves this estimator is crucial. A methodology for performing synchrophasor data conditioning and validation that fits neatly into the existing linear state estimation formulation is developed here. The results indicate that the proposed methodology provides a computationally simple, elegant solution to the synchrophasor data quality problem. / Ph. D.

Page generated in 0.0736 seconds