1 |
Mass spectrometry of ions in flamesButler, Carl John January 1994 (has links)
No description available.
|
2 |
Some reactions in hydrogen containing flamesSutton, Maxwell M. January 1966 (has links)
No description available.
|
3 |
Hydrogen-oxygen flames at low pressureWalmsley, Raymond January 1971 (has links)
No description available.
|
4 |
The structure of counter-flow diffusion flamesDavid, T. January 1987 (has links)
No description available.
|
5 |
A combined experimental and computational study of buoyant jet diffusion flamesLi, Jizhao January 2010 (has links)
In this work, both experimental and computational studies have been performed to investigate the flame dynamics and combustion instability of a laboratory buoyant jet diffusion flame from different prospects. The motivation behind this study was to obtain a better understanding of the dynamics of jet diffusion flames, as part of a long-term effort in achieving flexible fuel utilisation such as interchangeable fuels and achieving more effective combustion control such as better combustion efficiency.In the experimental study of jet diffusion flames, the influences of parameters such as nozzle exit diameter, fuel flow rate, fuel types and burner geometries have been investigated, where the focus was on the effects of fuel mixture on the flame dynamics. The frequency spectra, flame vortex development and flickering frequencies were measured using flow visualisation techniques and data acquisition systems. It was observed that the fuel jet velocity and the type of burner had a weak influence on the pulsation frequency for all the tested diameters. In contrast it has been found that both the ambient condition and fuel variability do have significant effects on the flame flickering frequency. Flame structure and dynamics are very different for the methane, propane and mixed fuel jet flames. Since the measurements of variables such as entrainment properties are difficult to obtain under experimental conditions, it is more effective to deal with such problems numerically. In the second part of this study, the dynamics of the buoyant jet diffusion flame has been investigated by idealised axisymmetric direct numerical simulations (DNS). The physical problem is a fuel jet issuing vertically into an oxidant ambient. Taking the advantages of idealised computational conditions, the effects of nozzle velocity profile, initial momentum thickness, Froude number, Reynolds number and co-flow on the near-field dynamics of a jet diffusion flame have been investigated. The computational cases have shown the development of different vortical structures, which suggest that vortical structures depend on both buoyancy and jet nozzle velocity profile. The flickering frequency and flickering energy results provide supportive evidence of the above finding. The results of the co-flow case indicate no significant flame-vortex interaction, and the flame oscillation is being suppressed. In general, the study suggested that the velocity shear plays a significant role in the near-field flame dynamics, apart from the buoyancy effects.
|
6 |
Dilatation, Flame Strain, Displacement Speed and Curvature in Turbulent Premixed Flames Using Direct Numerical SimulationShahbazian, Nasim 12 1900 (has links)
The relationship between dilatation, displacement speed, flame tangential strain rate and flame normal velocity gradient for a premixed turbulent flame in a corrugated/wrinkled flame regime is analyzed. The decomposition of dilatation into the flame tangential and normal strains and their relationship with curvature is studied. Three-dimensional, fully compressible direct numerical simulations (DNS) of premixed flames in a cube have been performed using a uniform 256^3 grid. For the turbulent case, decaying isotropic homogeneous turbulent velocity field is considered with an initial turbulence spectrum imposed. Simple single-step chemistry with an Arrhenius reaction rate is used. This simplification is valid as the flame considered is in the corrugated/wrinkled regime where the flame thickness is smaller than the smallest scales of turbulence. A single laminar flame is initially inserted into the turbulent field. A strongly linear relationship between dilatation and curvature has been seen which is due to the high correlation of displacement speed with curvature. The correlation between tangential strain rate and curvature is shown to be negative with a breakdown due to the curvature reaching the scale of the flame thickness at the cusps. To isolate the effect of heat release and turbulence, cases of a laminar sinusoidal wrinkled flame and a turbulent
𝛕=0 flame have been carried out. For a laminar sinusoidal wrinkled flame, a negative correlation between a^𝛕 and curvature was seen. This contradicts previous hypotheses (Haworth and Poinsot, 1992) (Chakraborty and Cant, 2004) where the negative correlation between a^𝛕 and curvature was explained to be due to different turbulence levels in front and behind the flame. Turbulence and alignment of flame surface with expansive tangential strains is shown to be responsible for the scatter seen in a^n and a^𝛕 relationships with curvature. Changing the peak reaction location towards the front of the flame did not change the trend in the plots of dilatation, tangential and normal strain rates versus curvature, confirming that dilatation relationship with curvature in particular is not due to any curvature distortion of the flame interior. However, it did thicken the flame and reduce the dilatation (and consequently its components, an and at) plot versus curvature and the magnitude of their curvature dependence. / Thesis / Master of Applied Science (MASc)
|
7 |
Studies of rich and ultra-rich combustion for syngas productionSmith, Colin Healey 25 February 2013 (has links)
Syngas is a mixture of hydrogen (H2), carbon monoxide (CO) and other species including nitrogen (N2), water (H2O), methane (CH4) and higher hydrocarbons. Syngas is a highly desired product because it is very versatile. It can be used for combustion in turbines or engines, converted to H2 for use in fuel cells, turned into diesel or other high-molecular weight fuels by the Fischer-Tropsch process and used as a chemical feedstock. Syngas can be derived from hydrocarbons in the presence of oxidizer or water as in steam reforming. There are many demonstrated methods to produce syngas with or without water addition including catalytic methods, plasma reforming and combustion.
The goal of this study is to add to the understanding of non-catalytic conversion of hydrocarbon fuels to syngas, and this was accomplished through two investigations: the first on fuel conversion potential and the second on the effect of preheat temperature.
A primarily experimental investigation of the conversion of jet fuel and butanol to syngas was undertaken to understand the potential of these fuels for conversion. With these new data and previously-published experimental data, a comparison amongst a larger set of fuels for conversion was also conducted. Significant soot formation was observed in experiments with both fuels, but soot formation was so significant in the jet fuel experiments that it limited the range of experimental operating conditions. The comparison amongst fuels indicated that higher conversion rates are observed with smaller molecular weight fuels, generally. However, equilibrium calculations, which are often used to determine trends in fuel conversion, showed the opposite trend.
In order to investigate preheat temperature, which is one important aspect of non-catalytic conversion, experiments were undertaken with burner-stabilized flames that are effectively 1-D and steady-state. An extensive set of model calculations were compared to the obtained experimental data and was used to investigate the effect of preheat temperatures that were beyond what was achievable experimentally. Throughout the range of operating conditions that were tested experimentally, the computational model was excellent in its predictions. Experiments where the reactants were preheated showed a significant expansion of the stable operating range of the burner (increasing the equivalence ratio at which the flame blew off). However, increasing preheat temperature beyond what is required for stabilization did not improve syngas yields. / text
|
8 |
Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated PressuresRakha, Ihsan Allah 05 1900 (has links)
The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth, and oxidation of soot, with a focus on the effects of pressure on soot yield. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements, like the temperature field, the species’ concentrations and the soot volume fraction. Fully coupled conservation equations for mass, momentum, energy, and species mass fractions are solved using a low Mach number formulation. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydrocarbons up to cyclopenta[cd]pyrene is used. Soot is modeled using a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Reasonable agreement is observed for the flame height, temperature, and the concentrations of various species. In each case, the peak soot volume fraction is predicted along the centerline as observed in the experiments. The predicted integrated soot mass at pressures ranging from 4-8 atm, scales as P2.1, in satisfactory agreement with the measured integrated soot pressure scaling (P2.27). Significant differences in the mole fractions of benzene and PAHs, and the predicted soot volume fractions are found, using two well-validated chemical kinetic mechanisms. At 4 atm, one mechanism over-predicts the peak soot volume fraction by a factor of 5, while the other under-predicts it by a factor of 5. A detailed analysis shows that the fuel tube wall temperature has an effect on flame stabilization.
|
9 |
Propagation and stability of flames in inhomogeneous mixturesPearce, Philip January 2015 (has links)
We investigate the effect of thermal expansion and gravity on the propagation and stability of flames in inhomogeneous mixtures. We focus on laminar flames in the simple configuration of an infinitely long channel with rigid porous walls in order to understand the effect of inhomogeneities on these fundamental structures. The first part of the thesis is concerned with premixed flames propagating against a prescribed parallel (Poiseuille) flow and subject to thermal expansion. We show that in a narrow channel (corresponding to a relatively thick flame), if the Peclet number is fixed and of order unity, a premixed flame propagating against a parallel flow is governed by the equation for a planar premixed flame with an effective diffusion coefficient. The enhanced diffusion is shown to correspond to Taylor dispersion, or shear-enhanced diffusion. Several important applications of the results are discussed. One of the topics of relevance is the bending effect of turbulent combustion. The results of our analysis show that, for a large flow intensity, the effective propagation speed of the premixed flame for depends only on the Peclet number (which is equal to the Reynolds number if the Prandtl number is unity). This mimics the behaviour of the turbulent premixed flame when the effective propagation speed is plotted versus the turbulence intensity for fixed values of the Reynolds number. The second part of the thesis is concerned with triple flames, subject to thermal expansion and buoyancy. A study is undertaken to investigate the stability of a diffusion flame subject to these effects, which gives rise to a problem analogous to the classical Rayleigh--B\'nard convection problem. A linear stability analysis in the Boussinesq approximation is performed, which leads to analytical results showing that the Burke-Schumann flame is unstable if the Rayleigh number is above a critical value which is determined. Numerical results confirm and complement the analytical results. A full numerical investigation of the effects of gravity and thermal expansion on triple flames propagating in a direction perpendicular to the direction of gravity is then carried out. This configuration does not seem to have received dedicated attention in the literature. It is found that the well-known monotonic relationship between the propagation speed $U$ and the flame-front thickness $\epsilon$, which exists in the constant density case when the Lewis numbers are of order unity or larger, persists for triple flames undergoing thermal expansion. Under strong enough gravitational effects, however, the relationship is no longer found to be monotonic, exhibiting hysteresis if the Rayleigh number is large enough. Finally, the initiation of triple flames from a hot two-dimensional ignition kernel is investigated. Particular attention is devoted to the energy required for ignition and the transient evolution of triple flames after initiation. Steady, non-propagating, two-dimensional solutions representing "flame tubes" are determined; their thermal energy is used to define a minimum ignition energy for the two-dimensional triple flame in the mixing layer. The transient behaviour of triple flames following "energy-increasing" or "energy-decreasing" perturbations to the flame tube solutions is described in situations where the underlying diffusion flame is either stable or unstable.
|
10 |
Nonpremixed flame in a counterflow under electric fieldsPark, Daegeun 08 May 2016 (has links)
Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames.
When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could be observed, regardless of applied frequencies. Therefore, the effect of ionic wind cannot be considered negligible under both DC and AC electric fields. Detailed explanations for electrical current, flame behavior, and flow characteristics under various conditions are discussed herein.
|
Page generated in 0.0618 seconds