• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 8
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 55
  • 23
  • 19
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems

Leka, K.D., Park, S-H., Kusano, K., Andries, J., Barnes, G., Bingham, S., Bloomfield, D.S., McCloskey, A.E., Delouille, V., Falconer, D., Gallagher, P.T., Georgoulis, M.K., Kubo, Y., Lee, K., Lee, S., Lobzin, V., Mun, J., Murray, S.A., Nageem, T.A.M.H., Qahwaji, Rami S.R., Sharpe, M., Steenburgh, R., Steward, G., Terkilsden, M. 08 October 2019 (has links)
Yes / A workshop was recently held at Nagoya University (31 October – 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today’s operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human “forecaster in the loop”; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies. / We wish to acknowledge funding from the Institute for Space-Earth Environmental Research, Nagoya University for supporting the workshop and its participants. We would also like to acknowledge the “big picture” perspective brought by Dr. M. Leila Mays during her participation in the workshop. K.D.L. and G.B. acknowledge that the DAFFS and DAFFS-G tools were developed under NOAA SBIR contracts WC-133R-13-CN-0079 (Phase-I) and WC-133R-14-CN-0103 (PhaseII) with additional support from Lockheed-Martin Space Systems contract #4103056734 for Solar-B FPP Phase E support. A.E.McC. was supported by an Irish Research Council Government of Ireland Postgraduate Scholarship. D.S.B. and M.K.G were supported by the European Union Horizon 2020 research and innovation programme under grant agreement No. 640216 (FLARECAST project; http://flarecast.eu). MKG also acknowledges research performed under the A-EFFort project and subsequent service implementation, supported under ESA Contract number 4000111994/14/D/ MPR. S. A. M. is supported by the Irish Research Council Postdoctoral Fellowship Programme and the US Air Force Office of Scientific Research award FA9550-17-1-039. The operational Space Weather services of ROB/SIDC are partially funded through the STCE, a collaborative framework funded by the Belgian Science Policy Office.
42

Electron acceleration in a flare plasma via coronal circuits

Önel, Hakan January 2008 (has links)
The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters, the magnetic field geometry and hard X-ray observations are used to obtain parameters for modelling macroscopic electric components, such as electric resistors, which are connected with each other. This model demonstrates that such a coronal electric current is correlated with large scale electric fields, which can accelerate the electrons quickly up to relativistic energies. The results of these calculations are encouraging. The electron fluxes predicted by the model are in agreement with the electron fluxes deduced from the measured photon fluxes. Additionally the model developed in this thesis proposes a new way to understand the observed double footpoint hard X-ray sources. / Die Sonne ist ein Stern, der aufgrund seiner räumlichen Nähe einen großen Einfluss auf die Erde hat. Seit jeher hat die Menschheit versucht die "Sonne zu verstehen" und besonders im 20. Jahrhundert gelang es der Wissenschaft viele der offenen Fragen mittels Beobachtungen zu beantworten und mit Modellen zu beschreiben. Die Sonne ist ein aktiver Stern, dessen Aktivität sich in seinem magnetischen Zyklus ausdrückt, welcher in enger Verbindung zu den Sonnenfleckenzahlen steht. Flares spielen dabei eine besondere Rolle, da sie hohe Energien auf kurzen Zeitskalen freisetzen. Sie werden begleitet von erhöhter Strahlungsemission über das gesamte Spektrum hinweg und setzen darüber hinaus auch energetische Teilchen frei. Beobachtungen von harter Röntgenstrahlung (z.B. mit der RHESSI Raumsonde der NASA) zeigen, dass ein großer Teil der freigesetzten Energie in die kinetische Energie von Elektronen transferiert wird. Allerdings ist nach wie vor nicht verstanden, wie die Beschleunigung der vielen Elektronen auf hohe Energien (jenseits von 20 keV) in Bruchteilen einer Sekunde erfolgt. Die vorliegende Arbeit präsentiert ein Model für die Erzeugung von energetischen Elektronen während solarer Flares, das auf mit realen Beobachtungen gewonnenen Parametern basiert. Danach bauen photosphärische Plasmaströmungen elektrische Spannungen in den aktiven Regionen der Photosphäre auf. Für gewöhnlich sind diese Potentiale mit elektrischen Strömen verbunden, die innerhalb der Photosphäre geschlossen sind. Allerdings kann infolge von magnetischer Rekonnektion eine magnetische Verbindung in der Korona aufgebaut werden, die die Regionen von magnetisch unterschiedlicher Polarität miteinander verbindet. Wegen der deutlich höheren koronalen elektrischen Leitfähigkeit, kann darauf die photosphärische Spannungsquelle über die Korona geschlossen werden. Das auf diese Weise generierte elektrische Feld führt nachfolgend zur Erzeugung eines hohen elektrischen Stromes, der in der dichten Chromosphäre harte Röntgenstrahlung generiert. Die zuvor erläuterte Idee wird mit elektrischen Schaltkreisen modelliert und untersucht. Dafür werden die mikroskopischen Plasmaparameter, die Geometrie des Magnetfeldes und Beobachtungen der harten Röntgenstrahlung verwendet, um makroskopische elektronische Komponenten, wie z.B. elektrische Widerstände zu modellieren und miteinander zu verbinden. Es wird gezeigt, dass der auftretende koronale Strom mit hohen elektrischen Feldern verbunden ist, welche Elektronen schnell auf hohe relativistische Energien beschleunigen können. Die Ergebnisse dieser Berechnungen sind ermutigend. Die vorhergesagten Elektronenflüsse stehen im Einklang mit aus gemessenen Photonenflüssen gewonnenen Elektronenflüssen. Zudem liefert das Model einen neuen Ansatz für das Verständnis der harten Röntgendoppelquellen in den Fußpunkten.
43

Observations and radiative hydrodynamic simulations of solar and stellar flares /

Allred, Joel C., January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (p. 101-105).
44

Elements of solar activity : particle acceleration and filament formation

Wood, Paul D. January 2005 (has links)
This thesis studies the acceleration of particles to super-thermal energies in explosive solar events as well as the magnetic changes in connectivity that may be responsible for changes in the morphology of quiescent filaments. Firstly a review of some of the observations of solar flare dynamics is given, as well as an introduction to the competing theories attempting to explain both particle acceleration and filament formation. An explanation of the numerical FORTRAN code that is used to calculate the trajectories of particle distribution functions in prescribed electromagnetic fields is given. Examples of known fields are used to test the accuracy of the code and the simple example of the well-known Litvinenko current sheet field is investigated. The results of charged particle orbit calculations in prescribed electric and magnetic fields motivated by magnetic reconnection models are then presented. The electromagnetic fields are chosen to resemble a current sheet with a localised reconnection region. The dependence of the model on the important physical parameters is considered. An introduction to the mathematical formulation of a collapsing magnetic trap is given. The same numerical code is used to calculate single electron orbits in this more complicated time dependent electromagnetic field. Consideration of important previous work is given before describing the best attempts to model the movement of flare loops in a realistic fashion. Finally the process of flux cancellation and filament formation is studied using a range of data including ground-based Hα and SoHO MDI magnetograms. It is found that the cancellation occurs at the ends of Hα sections of the filament and is accompanied by a noticeable increase in the Hα intensity and linkage of the sections. Measurements of the amount of flux cancelled at each site show it is in agreement with an estimate of the axial flux contained in the filament.
45

Accélération et propagation des particules énergétiques dans la couronne solaire : de l'analyse des données de l'instrument RHESSI à la préparation de l'exploitation de l'instrument STIX sur Solar Orbiter / Acceleration and propagation of energetic particles in the solar corona : from RHESSI to the STIX experiment

Musset, Sophie 03 October 2016 (has links)
Le soleil est une étoile active, et les éruptions solaires sont une des manifestations de cette activité. Il est admis que l'énergie disponible pour les éruptions solaires a une origine magnétique, et est transmise au milieu lors de phénomènes de reconnexion magnétique dans la couronne. Une partie de cette énergie permet d'accélérer les particules du milieu (électrons et ions). Cependant, les détails concernant les conditions dans lesquelles les particules sont accélérées et se propagent des régions d'accélération aux sites d'interaction lors des éruptions solaires ne sont pas encore tous compris.Plusieurs modèles d'accélération de particules ont été développés dans le cadre de l'étude des éruptions solaires. Dans certains modèles, les particules sont accélérées par un champ électrique généré au niveau de couches de courants électriques, qui peuvent être fragmentées, et qui sont préférentiellement localisées au niveau de surfaces quasi-séparatrices. Afin d'étudier le lien entre l'accélération de particules et le champ électrique direct produit au niveau de couches de courants, nous avons recherché s'il y avait des corrélations entre les sites d'émission des particules énergétiques et les courants électriques mesurés au niveau de la photosphère. Les observations X (dur) représentent les diagnostics les plus directs des électrons énergétiques produits pendant les éruptions solaires (rayonnement de freinage des électrons dans l'atmosphère solaire) et nous avons donc utilisé les observations X du satellite RHESSI (Reuven Ramaty High Energy Solar Spectrometric Imager) afin de produire des images et des spectres du rayonnement X dur des électrons énergétiques. Afin de caractériser les courants électriques dans la région éruptive, nous avons utilisé les données spectropolarimétriques de l'instrument HMI (Helioseismic and Magnetic Imager) du satellite SDO (Solar Dynamic Observatory) et nous avons calculé les densités de courants verticales photosphériques à partir du champ magnétique vectoriel reconstruit. Une corrélation entre les émissions X coronales (dues aux particules énergétiques proches du site d'accélération) et les rubans de forte densité de courants photosphériques (traces des couches de courants coronales) a été mise en évidence pour les cinq éruptions de classe X étudiées. De plus, grâce à la cadenc / The Sun is an active star and one manifestation of its activity is the production of solar flares. It is currently admitted that solar flares are caused by the release of magnetic energy during the process of magnetic reconnection in the solar upper atmosphere, the solar corona. During these flares, a large fraction of the magnetic energy is transferred to the acceleration of particles (electrons and ions). However, the details of particle acceleration during flares are still not completely understood.Several scenarios and models have been developed to explain particle acceleration. In some of them, electric fields, produced at the location of current sheets, which can be fragmented or collapsing, and which are preferentially located on quasi-separatrix layers (QSLs), are accelerating particles. To investigate a possible link between energetic particles and direct electric fields produced at current sheet locations, we looked for a correlation between X-ray emission from energetic electrons and electric currents which can be measured at the photospheric level. We used the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI) data to produce spectra and images of the X-ray emissions during GOES X-class flares, and spectropolarimetric data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) to calculate the vertical current densities from the reconstructed 3D vector magnetic field. A correlation between the coronal X-ray emissions (tracing the energetic electrons near the acceleration site) and the strong current ribbons at the photospheric level (tracing the coronal current sheet) was found in the five studied X-class flares. Moreover, thanks to the 12-minute time cadence of SDO/HMI, we could study for the first time the time evolution of electric currents: in several flares, a change in the current intensity, occurring during the flare peak, was found to be spatially correlated with X-ray emission sites. These observations enlighten a common evolution of both electric currents and X-ray emissions during the
46

Caracterização do comportamento da ionosfera durante eventos " magnetic crochets"

Almeida, Alexandre Rodel de 15 February 2017 (has links)
Submitted by Rosa Assis (rosa_assis@yahoo.com.br) on 2017-09-27T15:26:54Z No. of bitstreams: 2 Alexandre_Rodel_Almeida.pdf: 4116056 bytes, checksum: 5bc4c8bbde7317bac5b10754faa7b9bd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2017-10-02T14:44:26Z (GMT) No. of bitstreams: 2 Alexandre_Rodel_Almeida.pdf: 4116056 bytes, checksum: 5bc4c8bbde7317bac5b10754faa7b9bd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-10-02T14:44:26Z (GMT). No. of bitstreams: 2 Alexandre_Rodel_Almeida.pdf: 4116056 bytes, checksum: 5bc4c8bbde7317bac5b10754faa7b9bd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-02-15 / Fundo Mackenzie de Pesquisa / In the present work a statistical study involving medium and high intensity solar flares occurred between 2011 and 2015, in the diurnal period, in the Brazilian territory is presented. This statistic provides important information about the flares associated with rare events called "magnetic crochets", which are variations in the horizontal component of the surfacial geomagnetic field associated with the electromagnetic radiation of the Sun. For a better understanding of these phenomena and for the characterization of the behavior of the ionosphere during the "magnetic crochets", some examples are shown in which ionospheric, solar and geomagnetic parameters are compared. This type of analysis is infrequent nowadays and the literature does not present studies with such characteristics in the region of South America involving ionospheric soundings. The results show a good correlation between more intense X-ray and H-alpha explosions originating in active regions with more complex magnetic structures near the central meridian on the solar disk, which occurred around 15:00 UT (~ 12:00 local time Time), with a considerable number of "crochets". The results also show variations in the horizontal component of the atipically high surfacial geomagnetic field at stations around 22 ° south latitude, while in other regions of the globe the variations in this latitude range are smaller than in the equatorial regions, suggesting anomaly's influence in this region of South America. Results of the analysis related to the low ionosphere showed a good correlation between the more impulsive and intense events in the X-ray range of 0.4 to 1 Angstrom, with modification in the height of reflection of the signal in (VLF) and conductivity change at the ionosphere's base, which may suggest a characteristic of flares associated with magnetic crochets. / No presente trabalho é apresentado um estudo estatístico envolvendo flares solares de média e alta intensidade ocorridos entre 2011 e 2015, no período diurno, no território brasileiro. Essa estatística fornece informações importantes a respeito dos flares associados a eventos raros denominados “magnetic crochets”, que são variações na componente horizontal do campo geomagnético superficial associadas a radiação eletromagnética do Sol. Para melhor entendimento desses fenômenos e para a caracterização do comportamento da ionosfera durante os “magnetic crochets”, são mostrados alguns exemplos nos quais são comparados parâmetros ionosféricos, solares e geomagnéticos. Esse tipo de análise é pouco frequente atualmente e a literatura não apresenta estudos com tais características na região da América do Sul envolvendo sondagem ionosférica. Os resultados apresentados mostram boa correlação entre explosões mais intensas em raios-X e H-alfa originadas em regiões ativas com estruturas magnéticas mais complexas das proximidades do meridiano central no disco solar, ocorridas em torno das 15:00 UT (~12:00 Local Time), com um número considerável de “crochets”. Os resultados também mostram variações na componente horizontal do campo geomagnético superficial atipicamente alta em estações em torno de 22º de latitude Sul, enquanto que em outras regiões do globo as variações nessa faixa de latitude são menores do que nas regiões equatoriais, sugerindo influência da região da anomalia magnética presente nessa região da América do Sul. Resultados da análise relacionada à baixa ionosfera mostraram boa correlação entre os eventos mais impulsivos e intensos na faixa dos raios-X de 0,4 a 1 Angstrom, com modificação na altura de reflexão do sinal em frequências rádio muito baixas (VLF) e modificação da condutividade na base da ionosfera, o que pode sugerir uma característica de flares associados aos “magnetic crochets”.
47

Spektrální kontinua a čáry vodíku ve slunečních erupcích / Spectral continua and lines of hydrogen in solar flares

Procházka, Ondřej January 2015 (has links)
We present a unique design of a post-focal instrument suitable to detect fast changes of flux in waveband 350 - 440 nm. As it is not possible to measure the Sun as a star because of a strong background radiation in this waveband and using a thin slit makes it impossible to measure the whole flaring area we made a set of circular diaphragms of different sizes able to collect light only from a limited part of the Sun's atmosphere. For our data we also evolved new software technique based on statistical methods that even more increases a sensitivity on any changes in spectra. First results of observations of three X-class solar flares obtained in June 2014 proved significant increase of flux in Balmer continuum. One of these flares was measured from 20 minutes before a peak in SXR (GOES) so we were able to compare a whole impulsive phase with a state with no signs of a flare before it. Data suggest a radiation at Balmer limit (364,5 nm) of up to 5,5 stronger from flaring kernels compared to the quiet Sun. Powered by TCPDF (www.tcpdf.org)
48

Magnetohydrodynamics of magnetars' high-energy and radio emissions: A simulation study

Riddhi A Mehta (10660724) 07 May 2021 (has links)
<p>This article-based dissertation provides a review on the broad subject of magnetars-their characteristics, giant flares (GFs) and associated observations of X-ray, gamma-ray, and radio emissions and their proposed physical mechanisms. The primary purpose of this dissertation is to provide an extensive description of the two research projects I undertook during my tenure as a Graduate Research Assistant, under the guidance of my advisor. Broadly, my research was focused on building analytical models and running three-dimensional (3-D), high-resolution magnetohydrodynamic (MHD) simulations using the astrophysical PLUTO code to investigate the physical mechanisms behind high-energy (X-ray and gamma-ray) and radio emissions associated with magnetar GFs using observational constraints. This, in turn, aided in either validating or disfavoring existing theories behind such energetic explosions.</p><p>Chapter 1 provides a review on magnetars, their GFs and associated high-energy and radio emissions, largely based on excellent reviews by [1]–[5]. I summarize interesting observational features of magnetars, specifically those of soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs), along with known aspects of their X-ray and gamma-ray activity. I focus on the December 27, 2004 GF emitted by SGR 1806-20, the most energetic GF out of the three that occurred to date, describe its energetics and summarize existing theories behind the physical mechanisms that give rise to two emission characteristics associated with the GF - (i) quasi-periodic oscillations (QPOs) seen in the tail, and (ii) a radio afterglow detected a week after the GF. Lastly, I describe the methods I used to hypothesize the physical mechanisms behind QPOs and the radio emission and compare and contrast them with those suggested previously.</p><p>In chapter 2, I present a version of the research article in preparation and pending publication in the Monthly Notices of the Royal Astronomical Society. The work titled “Radio afterglow of magnetars’ giant flares”, undertaken under the supervision of Dr. Maxim Lyutikov and in collaboration with Dr. Maxim Barkov, explores the possible physical mechanisms behind the radio afterglow associated with the SGR 1806-20 GF using high-resolution 3-D MHD simulations.</p><p>In chapter 3, I present a version of the research article previously published by the Journal of Plasma Physics. The work titled “Tilting instability of magnetically confined spheromaks”, undertaken under the supervision of Dr. Maxim Lyutikov, in collaboration with Dr. Lorenzo Sironi and Dr. Maxim Barkov, investigates the tilting instability of a magnetically confined spheromak using 3-D MHD and relativistic particle-in-cell (PIC) simulations with an application to astrophysical plasmas, specifically to explain the QPOs arising in the tail of the SGR 1806-20 GF.</p><p>I summarize the main results and conclusions of the two research projects and describe future prospects in chapter 4, followed by appendices A and B which describe additional theoretical concepts and simulation results for a better understanding of the nature of radio afterglows associated with GFs, and structure of spheromaks. References are compiled after the appendices in order that they are first cited, followed by a brief autobiographical sketch, and a list of publications.<br></p>
49

Determining the alignment of Solar Orbiter instruments STIX and EUI during solar flares

Tynelius, Sofia January 2022 (has links)
Solar Orbiter is a mission launched in 2020 that will take images closer than ever of the Sun. It has ten instruments on board, including The Spectrometer/Telescope for Imaging X-rays (STIX) and The Extreme Ultraviolet Imager (EUI). STIX is a hard X-ray imaging spectrometer which observes bremsstrahlung from the non-thermal accelerated electrons in the footpoints of solar flares and from thermal hot plasma in flare loops. EUI consists of three telescopes, including a Full Sun Imager which is a one-mirror telescope that observes the solar corona and chromosphere in extreme ultraviolet (EUV) wavelengths 174Å and 304Å, respectively.   The purpose of the project was to determine the alignment between STIX and EUI to better understand and improve the pointing of STIX. It is important to know the accuracy of the pointing before using the instruments for science. The alignment was studied by looking at the flare location of the two instruments for about 30 flares. The flare location was approximated to be the brightest pixel in the image. The aspect solution of STIX was applied and this was also compared to the flare seen by EUI. For some of the flares, also imaging data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) was used to get a more detailed comparison. One flare was studied in more detail, using thermal and non-thermal emission seen by STIX, EUV emission seen by EUI 174Å and AIA 171Å as well as UV emission seen by AIA 1600Å. For four flares, the flare location was determined from the visible ribbons and loops instead of the brightest pixel. The methods of finding the flare location by brightest pixel and by looking at flare features were compared.   The average difference between the EUI and STIX flare location was within 12 arcseconds with a standard deviation between 18 and 42 arcseconds for the brightest pixel method. This difference has two main contributions: the accuracy of the STIX aspect solutions and the accuracy of identifying the common source features in EUV and X-rays. To increase the accuracy of finding common sources, four flares with well defined ribbons and loops were analyzed in detail. For these events, the accuracy of the STIX aspect system was determined to be better than 10.5 arcseconds. This is still significantly higher than the design requirements of being better than 4 arcsecs. Detailed analysis clearly showed that the method of determining the flare location by brightest pixel was not accurate enough to evaluate the STIX pointing. Further studies need to be done to improve the aspect solution.
50

Dynamics of Flare Shocks and Propagation of Coronal Mass Ejections / フレア衝撃波とコロナ質量放出の伝搬の動力学

Takahashi, Takuya 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20181号 / 理博第4266号 / 新制||理||1613(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 柴田 一成, 教授 一本 潔, 准教授 浅井 歩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM

Page generated in 0.0372 seconds