• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 12
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of a flight mechanics simulator

Helgesson, Fredrik January 2019 (has links)
Aircraft design is an act of art requiring dedication and careful work to ensure good results. An essential tool in that work is a flight mechanics simulator. Such simulators are often built up of modules/models that are executed in a sequential order in each time iteration. This project aims to analyze potential improvements to the model execution order based on the dependency structure of one such simulator. The analysis method Design Structure Matrix (DSM), was used to define/map the dependencies and then Binary Linear Programming (BLP) was utilized to find five new potentially improved model orders to minimize the number of feedbacks from one iteration to the next one. Those five proposed execution orders were next compared and evaluated. The result is a model order that reduce the number of models receiving feedbacks from the previous iteration from 13 to 6, with insignificant changes in the precision of the simulator. / Vid flygplanskonstruktion krävs hårt och noggrant arbete för att säkerställa gott resultat. Ett oumbärligt verktyg är då en flygmekanisk simulator. Den typen av simulatorer är ofta uppbyggda av moduler/modeller som exekveras i en bestämd sekventiellt ordning i varje tidsteg. Syftet med detta projekt är att undersöka möjliga förbättringar av exekverings ordningen av de olika modellerna i en existerande simulator, baserat på beroendestrukturen. Analysmetoden Design Structure Matrix (DSM) användes för att bestämma beroendestrukturen och sedan utnyttjades Binär Linjär Programmering (BLP) för att hitta fem förbättrade modellordningar med avseende på att minimera antalet modeller som erhåller indata från föregående tidsiteration. De fem förbättringsförslagen jämfördes och utvärderades. Resultatet är en modellordning som kan minska antalet återkopplande modeller från 13 till 6, med insignifikanta skillnader i precisionen av simulatorn.
12

Energy Optimal Path Planning Of An Unmanned Solar Powered Aircraft

Pinar, Erdem Emre 01 January 2013 (has links) (PDF)
In this thesis, energy optimal route of an unmanned solar powered air vehicle is obtained for the given mission constraints in order to sustain the maximum energy balance. The mission scenario and the constraints of the solar powered UAV are defined. Equations of motion are obtained for the UAV with respect to the chosen structural properties and aerodynamic parameters to achieve the given mission. Energy income and loss equations that state the energy balance, up to the position of the UAV inside the atmosphere are defined. The mathematical model and the cost function are defined according to the mission constraints, flight mechanics and energy balance equations to obtain the energy optimal path of the UAV. An available optimal control technique is chosen up to the mathematical model and the cost function in order to make the optimization. Energy optimal path of the UAV is presented with the other useful results. Optimal route and the other results are criticized by checking them with the critical positions of the sun rays.
13

Flight Control System Design For An Over Actuated Uav Against Actuator Failures

Isik, Sinem 01 February 2010 (has links) (PDF)
This thesis describes the automatic flight control systems designed for a conventional and an over actuated unmanned air vehicle (UAV). A nonlinear simulation model including the flight mechanics equations together with the interpolated nonlinear aerodynamics, environmental effects, mass-inertia properties, thrust calculations and actuator dynamics is created / trim and linearization codes are developed. Automatic flight control system of the conventional UAV is designed by using both classical and robust control methods. Performances of the designs for full autonomous flight are tested through nonlinear simulations for different maneuvers in the presence of uncertainties and disturbances in the aircraft model. The fault tolerant control of an over actuated UAV is the main concern of the thesis. The flight control system is designed using classical control techniques. Two static control allocation methods are examined: Moore-Penrose pseudo inverse and blended inverse. For this purpose, an aircraft with three sets of ailerons is employed. It is shown that with redundant control surfaces, fault tolerant control is possible. Although both of the static control allocation methods are found to be quite successful to realize the maneuvers, the new blended inverse algorithm is shown to be more effective in controlling the aircraft when some of the control surfaces are lost. It is also demonstrated that, with redundant control surfaces it is possible to recover the aircraft during a maneuver even some of the control surfaces are damaged or got stuck at a particular deflection.
14

Airspeed estimation of aircraft using two different models and nonlinear observers

Roser, Alexander, Thunberg, Anton January 2023 (has links)
When operating an aircraft, inaccurate measurements can have devastating consequences. For example, when measuring airspeed using a pitot tube, icing effects and other faults can result in erroneous measurements. Therefore, this master thesis aims to create an alternative method which utilizes known flight mechanical equations and sensor fusion to create an estimate of the airspeed during flight. For validation and generation of flight data, a simulation model developed by SAAB AB, called ARES, is used.  Two models are used to describe the aircraft behavior. One of which is called the dynamic model and utilizes forces acting upon the aircraft body in the equations of motion. The other model, called the kinematic model, instead describes the motion with accelerations of the aircraft body. The measurements used are the angle of attack (AoA), side-slip angle (SSA), GPS velocities, and angular rates from an inertial measurement unit (IMU). The dynamic model assumes that engine thrust and aerodynamic coefficients are already estimated to calculate resulting forces, meanwhile the kinematic model instead uses body fixed accelerations from the IMU. These models are combined with filters to create estimations of the airspeed. The filters used are the extended Kalman filter (EKF) and unscented Kalman filter (UKF). These are combined with the two models to create in total four methods to estimate the airspeed.  The results show no major difference in the performance between the filters except for computational time, for which the EKF has the fastest. Further, the result show similar airspeed estimation performance between the models, but differences can be seen. The kinematic model manages to estimate the wind with higher details and to converge faster, compared to the dynamic model. Both models suffer from an observability problem. This problem entails that the aircraft needs to be maneuvered to excite the AoA and SSA in order for the estimation methods to evaluate the wind, which is crucial for accurate airspeed estimation. The robustness of the dynamic model regarding errors in engine thrust and aerodynamic coefficients are also researched, which shows that the model is quite robust against errors in these values.
15

Methods for validating a flight mechanical simulation model for dynamic maneuvering / Metod för validering av flygmekanisk simulator för dynamisk manövrering

Senneberg, Sofia January 2021 (has links)
Flight mechanical simulators play an important role in the design steps during development of a new aircraft. To be able to simulate and evaluate flight mechanical characteristics during development it is important to minimize development time and cost while keeping flight safety high during early flights. The aim of the project presented in this thesis is to develop a method for validating a flight mechanical simulator against flight test data from dynamic maneuvering. An important part in this thesis is about how deviations in the result data can be found and analyzed, for example deviations between aircraft individuals or store configurations. The work presented here results in a good model for comparison of a big amount of data where it is easy to backtrace where the deviation occurs. / Flygmekaniska simulatorer är av stor betydelse under utvecklingen av ett nytt stridsflygplan. Möjligheten att simulera och utvärdera under tidens gång har stor betydelse både ur tid- och kostnadsbesparings perspektiv men även ur flygsäkerhetsperspektiv när det är dags för första flygning. Syftet med det här projektet är att utveckla en metod för jämförelse mellan simulering och flygprov för att validera hur bra den flygmekaniska simulatorn kan förutspå flygplansbeteende. En viktig del i projektet syftar till hur skillnader i resultaten kan hittas och analyseras, till exempel skillnader mellan olika flygplansindivider eller lastkonfigurationer. Arbetet presenterat här har resulterat i en modell som är bra för jämförelse av en stor mängd data där det är enkelt att spåra var skillnaderna har uppstått.
16

Predictive Control of Multibody Systems for the Simulation of Maneuvering Rotorcraft

Sumer, Yalcin Faik 18 April 2005 (has links)
Simulation of maneuvers with multibody models of rotorcraft vehicles is an important research area due to its complexity. During the maneuvering flight, some important design limitations are encountered such as maximum loads and maximum turning rates near the proximity of the flight envelope. This increases the demand on high fidelity models in order to define appropriate controls to steer the model close to the desired trajectory while staying inside the boundaries. A framework based on the hierarchical decomposition of the problem is used for this study. The system should be capable of generating the track by itself based on the given criteria and also capable of piloting the model of the vehicle along this track. The generated track must be compatible with the dynamic characteristics of the vehicle. Defining the constraints for the maneuver is of crucial importance when the vehicle is operating close to its performance boundaries. In order to make the problem computationally feasible, two models of the same vehicle are used where the reduced model captures the coarse level flight dynamics, while the fine scale comprehensive model represents the plant. The problem is defined by introducing planning layer and control layer strategies. The planning layer stands for solving the optimal control problem for a specific maneuver of a reduced vehicle model. The control layer takes the resulting optimal trajectory as an optimal reference path, then tracks it by using a non-linear model predictive formulation and accordingly steers the multibody model. Reduced models for the planning and tracking layers are adapted by using neural network approach online to optimize the predictive capabilities of planner and tracker. Optimal neural network architecture is obtained to augment the reduced model in the best way. The methodology of adaptive learning rate is experimented with different strategies. Some useful training modes and algorithms are proposed for these type of applications. It is observed that the neural network increased the predictive capabilities of the reduced model in a robust way. The proposed framework is demonstrated on a maneuvering problem by studying an obstacle avoidance example with violent pull-up and pull-down.
17

Intégration d'information a priori dans la régression de processus Gaussiens : Applications à l'ingénierie aéronautique / Incorporating Prior Information from Engineering Design into Gaussian Process Regression : with applications to Aeronautical Engineering

Chiplunkar, Ankit 07 December 2017 (has links)
Dans cette thèse, nous proposons de construire de meilleurs modèles Processus Gaussiens (GPs) en intégrant les connaissances antérieures avec des données expérimentales. En raison du coût élevé de l’exécution d’expériences sur les systèmes physiques, les modèles numériques deviennent un moyen évident de concevoir des systèmes physiques. Traditionnellement, ces modèles ont été construits expérimentalement et itérativement; une méthode plus rentable de construction de modèles consiste à utiliser des algorithmes d’apprentissage automatique. Nous démontrons comment créer des modèles en intégrant une connaissance antérieure en modifiant les fonctions de covariance. Nous proposons des modèles GP pour différents phénomènes physiques en mécanique des fluides.De même, les lois physiques entre plusieurs sorties peuvent être appliquées en manipulant les fonctions de covariance. Pour chaque application, nous comparons le modèle proposé avec le modèle de l’état de l’art et démontrons les gains de coût ou de performance obtenus. / In this thesis, we propose to build better Gaussian Process (GP) modelsby integrating the prior knowledge of Aircraft design with experimental data. Due tothe high cost of performing experiments on physical systems, models become an efficientmeans to designing physical systems. We demonstrate how to create efficient models byincorporating the prior information from engineering design, mainly by changing the covariancefunctions of the GP.We propose GP models to detect onset of non-linearity, detectmodal parameters and interpolate position of shock in aerodynamic experiments. Similarly,physical laws between multiple outputs can be enforced by manipulating the covariancefunctions, we propose to integrate flight-mechanics to better identify loads using thesemodels. For each application we compare the proposed model with the state-of-the-artmodel and demonstrate the cost or performance gains achieved.
18

Contribution à la modélisation, l'identification et la commande d'un hélicoptère miniature / Contribution to small-scale helicopter modeling, identification and control

Roussel, Emmanuel 12 October 2017 (has links)
La stabilisation et l’automatisation du vol de tout véhicule aérien nécessite la mise en oeuvre d’algorithmes de commande. La synthèse et la simulation des lois de commande reposent sur un modèle mathématique du véhicule, qui doit être de complexité et de précision appropriées. Cette thèse présente une méthodologie complète d’identification appliquée à un hélicoptère coaxialminiature. L’étude théorique de son comportement en vol permet d’établir plusieurs modèles basés sur la mécanique du vol, qui diffèrent par les phénomènes aérodynamiques pris en compte. Ils sont identifiés, comparés et validés grâce à des données de vol, mettant en évidence l’importance de certains phénomènes dans la précision du modèle. Différentes lois de commande sont alors étudiées et évaluées en simulation puis par des expérimentations sur un prototype. Les résultats obtenus sont conformes aux simulations numériques, validant ainsi l’ensemble de la démarche. / Control algorithms are at the heart of the stability and automatic flight capabilities of any aerial vehicle. Synthesis and simulation of control laws are based on a mathematicalmodel of the vehicle, which must be a trade-off between simplicity and accuracy. This work presents a complete system identification methodology applied on a miniature coaxial helicopter. Based on flight mechanics and aerodynamics, several models are built. They differ in the aerodynamic phenomena taken into account. They are identified, compared and validated thanks to flight data, highlighting important phenomena in the accuracy of the model. Several flight control strategies are then studied and evaluated through simulations and experiments with a prototype. The results are in accordance with numerical simulations, thus validating the whole approach.
19

Letecká hra pro Android / Flight Game for Android

Šabata, David January 2013 (has links)
This work deals with flight game development on Android platform. Firstly the possibilities of native development and development using Libgdx library will be discussed. Then flight mechanics of a real aircraft and simplified mechanics used in flight games will be explained. The work will also summarize current trends in mobile flight game controls and will propose a new control method based on touch input. Using this method a flight game will be designed and implemented. In the end of this work the process of testing and publishing will discussed, as well as possibilities of further development.
20

Détection et isolation de pannes basées sur la platitude différentielle : application aux engins atmosphériques. / Fault detection and isolation based on differential flatness : application to atmospheric vehicles

Zhang, Nan 18 June 2010 (has links)
Ce travail de thèse aborde le problème de la détection et de l’isolation des pannes à base de modèle du système dynamique non linéaire. Les techniques de détection et d’identification de pannes sont déjà appliquées aux systèmes industriels et elles jouent un rôle important pour assurer les performances attendues des systèmes automatiques. Les différentes approches du diagnostic des systèmes dynamiques semblent être souvent le résultat de contextes différents notamment en ce qui concerne les applications visées et le cahier des charges qui en résulte. Ainsi, la nature des informations disponibles sur le système ou le type de défauts à détecter conduit à la mise en œuvre de stratégies spécifiques. Dans cette étude on suppose disposer d’un modèle de fonctionnement du système et les pannes considérées sont celles qui conduisent le système à ne plus suivre ce modèle. Après avoir introduit la notion de platitude différentielle pour un système dynamique non linéaire continu, plusieurs exemples de systèmes dynamiques différentiellement plats sont introduits. Les redondances analytiques mises en évidence par cette propriété sont dans une première étape utilisées pour détecter des pannes. Ceci conduit à développer des estimateurs d’ordre supérieurs pour les dérivées des sorties plates du système et des estimateurs non linéaires de l’état du système. Cette approche est mise en œuvre dans le cadre de la détection de pannes des moteurs d’un Quadri-Rotor.La notion de platitude pour les systèmes dynamiques discrets est alors introduite. Il est alors possible de développer une nouvelle approche pour la détection des pannes, fondée sur la redondance temporelle entre les informations résultant des mesures directes de composantes du vecteur d’état du Quadri-Rotor et les estimations des sorties plates à chaque instant d’échantillonnage. Cette approche qui est illustrée ici aussi dans le cas du Quadri-Rotor, permet aussi de développer une méthode d’identification en ligne des pannes en se basant sur la chronologie de la propagation de leurs effets / This PhD is submitted in model-based faults detection and isolation in nonlinear dynamic system. The techniques of faults detection and isolation are already being applied to industrial systems and have played an important role to ensure the expected performance of automated systems. The differences in approaches to diagnosis of dynamic systems often seem to be the result of different contexts including in respect of applications and referred the specification that follows. Thus, the nature of information available on the system or the type of fault detection leads to the implementation of specific strategies. In this study we have assumed a model of system operation and faults considered are those that lead the system to no longer follow this model.After introducing the concept of differential flatness for a nonlinear dynamical system continued, several examples of differentially flat systems dynamics are introduced. The analytical redundancy highlighted by this property is a first step used to detect faults. This leads to develop estimators for higher order derivatives of the outputs flat of the system and estimator plate for nonlinear system state. This approach is implemented in the context of fault detection engine of a Quadri-Rotor.The notion of flatness for discrete dynamical systems is introduced. It is then possible to develop a new approach for fault detection based on temporal redundancy between the information from direct measurements of components of the state vector of Quadri-Rotor and estimates of output flat at each sampling instant. This approach is illustrated here as in the case of the Quadri-Rotor, can also develop a method for online identification of fault based on the chronology of the spread of their effects

Page generated in 0.0812 seconds