• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Využití družicových radarových dat pro monitorování záplav v závislosti na typu krajinného pokryvu / Flood monitoring using satellite radar data for different land cover categories

Rauch, Tomáš January 2011 (has links)
The aim of this thesis is to find method for flood monitoring from radar images. The thesis deals with flood in general and with organization of flood protection. There are described principles of radar sensors. There is also summary of satellites with their parameters. Next part of the thesis describes interaction between radar beam and different types of surface. Theoretical part is closed by overview of the existing methods for flood monitoring. In the practical part there is method for flood monitoring applied to areas affected by flood. The process is based on the classification of the radar image. Using classification and digital elevation model is drawn boundary of flooded area. The result boundaries are compared with the existing maximal flooded areas.
2

Improvements to Flood Detection and Monitoring Through Satellite Autonomy, Sensor Webs and Hydrological Modeling

Ip, Filipe January 2006 (has links)
This dissertation is put together from a set of three journal papers. The first paper describes how satellite imagery and spacecraft autonomy are used to advance the field of near real-time detection, monitoring, and rapid response to flooding. The second paper describes the ground instrumentation of an artificial water recharge basin field site close to Tucson with a network of inter-connected sensors to study the transient process of repeated flooding in real-time, and the third paper describes an effort to link together multiple ground-based and space-based remote sensing assets to an integrated and coordinated monitoring system for floods. Collectively, the three papers describe new breakthroughs in the field of flood detection and monitoring through the use of satellite onboard automation and Sensorweb networks.
3

Assessing damages of agricultural land due to flooding in a lagoon region based on remote sensing and GIS: case study of the Quang Dien district, Thua Thien Hue province, central Vietnam

Nguyen, Ngoc Bich, Nguyen, Ngu Huu, Tran, Duc Thanh, Tran, Phuong Thi, Pham, Tung Gia, Nguyen, Tri Minh 29 December 2021 (has links)
This study aims to create a flood extent map with Sentinel imagery and to evaluate impacts on agricultural land in the lagoon region of central Vietnam. In this study, remote sensing images, obtained from 2017 to 2019, were used to simultaneously map the land cover status of a flood in the Quang Dien district. This study highlights flooded areas from Sentinel-2 images by calculating some indicators such as the Land Surface Water Index (LSWI) and the Enhanced Vegetation Index (EVI). Comparisons between the floodplain samples (GPS point-based) and flood mapping results, with the ground-truth data, indicate that the overall accuracy and Kappa coefficients were 97.9% and 0.62 respectively for 2017; the values for 2019 were 95.7% and 0.77 for the same coefficients. Land use maps overlying the flood-affected maps show that approximately 11% of the agriculture land area was affected by floods in 2019 comparison to a 10% in 2017. Wet rice was the most affected crop with the flooded area accounting for more than 70% of the district under each flood event. The most affected communes are: Quang An, Quang Phuoc and Quang Thanh. This study provides valuable information for flood disaster planning, mitigation and recovery activities in Vietnam. / Mục tiêu của nghiên cứu là lập bản đồ phân bố ngập lụt với hình ảnh vệ tinh Sentinel và đánh giá ảnh hưởng ngập lụt đến sử dụng đất nông nghiệp ở vùng đầm phá miền Trung, Việt Nam. Trong nghiên cứu này, ảnh viễn thám thu nhận giai đoạn 2017-2019 được sử dụng để xây dựng bản đồ hiện trạng sử dụng đất tại thời điểm bị ngập nước trên địa bàn huyện Quảng Điền. Nghiên cứu đã xác định được vùng ngập lụt ở huyện Quảng Điền bằng phương pháp phân loại chỉ số mặt nước (Land Surface Water Index – LSWI) và chỉ số khác biệt thực vật (Enhanced Vegetation Index-EVI) từ ảnh Sentinel-2. Xác định vùng nước lũ bị che khuất bởi mây bằng mô hình số hóa độ cao (DEM). Kết quả phân loại vùng ngập lụt được so sánh với giá trị tham chiếu mặt đất cho thấy độ chính xác tổng thể và hệ số Kappa đạt được trong năm 2017 là 97,9% và 0,62; trong khi năm 2019 đạt 95,7% và 0.77. Bản đồ sử dụng đất chồng lên bản đồ lũ lụt cho thấy khoảng 11% diện tích đất nông nghiệp bị ảnh hưởng bởi lũ lụt năm 2019 so với 10% năm 2017. Cây lúa nước là cây trồng bị ảnh hưởng nặng nề nhất, với diện tích bị ngập lụt chiếm hơn 70% diện tích lúa của huyện. Các xã bị ngập lớn là xã Quảng An, Quảng Phước và Quảng Thành. Nghiên cứu này cung cấp thông tin có giá trị cho các hoạt động lập kế hoạch, giảm nhẹ và phục hồi thiên tai lũ lụt ở Việt Nam.
4

Use of social media data in flood monitoring / Uso de dados das mídias sociais no monitoramento de enchentes

Restrepo Estrada, Camilo Ernesto 05 November 2018 (has links)
Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. This thesis aims to show a novel methodology that shows a way to close the research gap regarding the use of social networks as a proxy for precipitation-runoff and flood forecast estimates. To address this, it is proposed to use a transformation function that creates a proxy variable for rainfall by analysing messages from geo-social media and precipitation measurements from authoritative sources, which are then incorporated into a hydrological model for the flow estimation. Then the proxy and authoritative rainfall data are merged to be used in a data assimilation scheme using the Ensemble Kalman Filter (EnKF). It is found that the combined use of authoritative rainfall values with the social media proxy variable as input to the Probability Distributed Model (PDM), improves flow simulations for flood monitoring. In addition, it is found that when these models are made under a scheme of fusion-assimilation of data, the results improve even more, becoming a tool that can help in the monitoring of \"ungauged\" or \"poorly gauged\" catchments. The main contribution of this thesis is the creation of a completely original source of rain monitoring, which had not been explored in the literature in a quantitative way. It also shows how the joint use of this source and data assimilation methodologies aid to detect flood events. / As inundações são um dos tipos mais devastadores de desastres em todo o mundo em termos de perdas humanas, econômicas e sociais. Se os dados oficiais forem escassos ou indisponíveis por alguns períodos, outras fontes de informação são necessárias para melhorar a estimativa de vazões e antecipar avisos de inundação. Esta tese tem como objetivo mostrar uma metodologia que mostra uma maneira de fechar a lacuna de pesquisa em relação ao uso de redes sociais como uma proxy para as estimativas de precipitação e escoamento. Para resolver isso, propõe-se usar uma função de transformação que cria uma variável proxy para a precipitação, analisando mensagens de medições geo-sociais e precipitação de fontes oficiais, que são incorporadas em um modelo hidrológico para a estimativa de fluxo. Em seguida, os dados de proxy e precipitação oficial são fusionados para serem usados em um esquema de assimilação de dados usando o Ensemble Kalman Filter (EnKF). Descobriu-se que o uso combinado de valores oficiais de precipitação com a variável proxy das mídias sociais como entrada para o modelo distribuído de probabilidade (Probability Distributed Model - PDM) melhora as simulações de fluxo para o monitoramento de inundações. A principal contribuição desta tese é a criação de uma fonte completamente original de monitoramento de chuva, que não havia sido explorada na literatura de forma quantitativa.
5

Use of social media data in flood monitoring / Uso de dados das mídias sociais no monitoramento de enchentes

Camilo Ernesto Restrepo Estrada 05 November 2018 (has links)
Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. This thesis aims to show a novel methodology that shows a way to close the research gap regarding the use of social networks as a proxy for precipitation-runoff and flood forecast estimates. To address this, it is proposed to use a transformation function that creates a proxy variable for rainfall by analysing messages from geo-social media and precipitation measurements from authoritative sources, which are then incorporated into a hydrological model for the flow estimation. Then the proxy and authoritative rainfall data are merged to be used in a data assimilation scheme using the Ensemble Kalman Filter (EnKF). It is found that the combined use of authoritative rainfall values with the social media proxy variable as input to the Probability Distributed Model (PDM), improves flow simulations for flood monitoring. In addition, it is found that when these models are made under a scheme of fusion-assimilation of data, the results improve even more, becoming a tool that can help in the monitoring of \"ungauged\" or \"poorly gauged\" catchments. The main contribution of this thesis is the creation of a completely original source of rain monitoring, which had not been explored in the literature in a quantitative way. It also shows how the joint use of this source and data assimilation methodologies aid to detect flood events. / As inundações são um dos tipos mais devastadores de desastres em todo o mundo em termos de perdas humanas, econômicas e sociais. Se os dados oficiais forem escassos ou indisponíveis por alguns períodos, outras fontes de informação são necessárias para melhorar a estimativa de vazões e antecipar avisos de inundação. Esta tese tem como objetivo mostrar uma metodologia que mostra uma maneira de fechar a lacuna de pesquisa em relação ao uso de redes sociais como uma proxy para as estimativas de precipitação e escoamento. Para resolver isso, propõe-se usar uma função de transformação que cria uma variável proxy para a precipitação, analisando mensagens de medições geo-sociais e precipitação de fontes oficiais, que são incorporadas em um modelo hidrológico para a estimativa de fluxo. Em seguida, os dados de proxy e precipitação oficial são fusionados para serem usados em um esquema de assimilação de dados usando o Ensemble Kalman Filter (EnKF). Descobriu-se que o uso combinado de valores oficiais de precipitação com a variável proxy das mídias sociais como entrada para o modelo distribuído de probabilidade (Probability Distributed Model - PDM) melhora as simulações de fluxo para o monitoramento de inundações. A principal contribuição desta tese é a criação de uma fonte completamente original de monitoramento de chuva, que não havia sido explorada na literatura de forma quantitativa.

Page generated in 0.0788 seconds