1 |
STRUCTURED SOFTWARE DESIGN IN A REAL-TIME CONTROL APPLICATIONDeBrunner, Keith E. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 1984 / Riviera Hotel, Las Vegas, Nevada / Software for real-time (time critical) control applications has been shown in military and
industry studies to be a very expensive type of software effort. This type of software is not
typically addressed in discussions of software architecture design methods and techniques,
therefore the software engineer is usually left with a sparse design “tool kit” when
confronted with overall system design involving time critical and/or control problems. This
paper outlines the successful application of data flow and transaction analysis design
methods to achieve a structured yet flexible software architecture for a fairly complex
antenna controller used in automatic tracking antenna systems. Interesting adaptations of,
and variations on, techniques described in the literature are discussed; as are issues of
modularity, coupling, morphology, global data handling, and evolution (maintenance).
Both positive and negative aspects of this choice of design method are outlined, and the
importance of a capable real-time executive and conditional compilation and assembly is
stressed.
|
2 |
Temperature proton exchange membrane fuel cells in a serpentine designMaasdorp, Lynndle Caroline January 2010 (has links)
<p>The aim of my work is to model a segment of a unit cell of a fuel cell stack using numerical methods which is classified as computational fluid dynamics and implementing the work in a commercial computational fluid dynamics package, FLUENT. The focus of my work is to study the thermal distribution within this segment. The results of the work aid in a better understanding of the fuel cell operation in this temperature range. At the time of my investigation experimental results were unavailable for validation and therefore my results are compared to previously published results published. The outcome of the results corresponds to this, where the current flux density increases with the increasing of operating temperature and fixed operating voltage and the temperature variation across the fuel cell at varying operating voltages. It is in the anticipation of determining actual and or unique material input parameters that this work is done and at which point this studies results would contribute to the understanding high temperature PEM fuel cell thermal behaviour, significantly.</p>
|
3 |
Temperature proton exchange membrane fuel cells in a serpentine designMaasdorp, Lynndle Caroline January 2010 (has links)
<p>The aim of my work is to model a segment of a unit cell of a fuel cell stack using numerical methods which is classified as computational fluid dynamics and implementing the work in a commercial computational fluid dynamics package, FLUENT. The focus of my work is to study the thermal distribution within this segment. The results of the work aid in a better understanding of the fuel cell operation in this temperature range. At the time of my investigation experimental results were unavailable for validation and therefore my results are compared to previously published results published. The outcome of the results corresponds to this, where the current flux density increases with the increasing of operating temperature and fixed operating voltage and the temperature variation across the fuel cell at varying operating voltages. It is in the anticipation of determining actual and or unique material input parameters that this work is done and at which point this studies results would contribute to the understanding high temperature PEM fuel cell thermal behaviour, significantly.</p>
|
4 |
Three dimensional thermal modelling of high temperature proton exchange membrane fuel cells in a serpentine designMaasdorp, Lynndle Caroline January 2010 (has links)
Magister Scientiae - MSc / The aim of my work is to model a segment of a unit cell of a fuel cell stack using numerical methods which is classified as computational fluid dynamics and implementing the work in a commercial computational fluid dynamics package, FLUENT. The focus of my work is to study the thermal distribution within this segment. The results of the work aid in a better understanding of the fuel cell operation in this temperature range. At the time of my investigation experimental results were unavailable for validation and therefore my results are compared to previously published results published. The outcome of the results corresponds to this, where the current flux density increases with the increasing of operating temperature and fixed operating voltage and the temperature variation across the fuel cell at varying operating voltages. It is in the anticipation of determining actual and or unique material input parameters that this work is done and at which point this studies results would contribute to the understanding high temperature PEM fuel cell thermal behaviour, significantly. / South Africa
|
Page generated in 0.0341 seconds