• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 13
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Experimental Investigations on Supersonic Ejectors

Srisha Rao, M V January 2013 (has links) (PDF)
A supersonic ejector is used to pump a secondary gas using a supersonic primary gas flow by augmentation of momentum and energy in a variable area duct. The internal compressible flow through an ejector has many complex gas dynamic features, like compressible shear layers and associated shock interactions. In many practical applications, ejectors are operated in the choked flow regimes where higher operating pressure ratios and mass flow rates are encountered. On the other hand, rather low entrainment and subsonic secondary flow dynamics (referred as the mixed regime of operation) dominate the dilution and purging applications of ejectors. The fundamental understanding of the flow dynamics associated with gaseous mixing process in the ejector especially in the mixed operational regime is still unclear. Obtaining a comprehensive understanding of the flow through a supersonic ejector in the mixed regime through experimental investigations is the prime focus of the present study. A new supersonic ejector test facility is designed, fabricated and established in the laboratory during the course of this study. The effects of using different gases in the secondary flow have been investigated. Two novel methods to improve the ejector by enhancing mixing are also implemented. Optical diagnostic tools (Time-resolved Schlieren and laser scattering) and wall static pressure measurements are used to investigate the dynamics of mixing process inside the ejector. State of the art image processing codes are developed to determine the length in the ejector for which the primary and the secondary flows are separate, referred here as the non-mixed length from the results of the flow visualization studies. Exhaustive experiments are carried out on the two dimensional rectangular supersonic ejector by varying the mass flow rates of primary and secondary flows, primary stagnation pressure, for two locations of the nozzle in the ejector. The non-mixed length determined from quantitative flow visualization tools is found to lie within 4.5 to 5.2 times the height of the duct (20 mm). The non-mixed flow length determined from flow visualization studies corroborates well with the wall static pressure measurements. A significant reduction of non-mixed length of about 46.7% is caused by shock wave-boundary layer interactions in the supersonic nozzle at over-expanded conditions. Further, the effects of differences in molecular weight and ratio of specific heats on the performance are also studied using cylindrical supersonic ejector at low entrainment ratios (0.008 to 0.06). In these studies air is used as the primary fluid while argon and helium are used in the secondary flow segment of the ejector. The results indicate that Argon has better entrainment characteristics compared to helium. Two novel supersonic nozzles (the tip rig nozzle and Elliptic Sharp Tipped Shallow lobed nozzle) are also devel- oped to enhance mixing in the ejector. About 30% enhancement of entrainment ratio is observed with the newly designed nozzle geometries. Illustrative numerical simulations are also carried out to complement the experimental studies.
32

Reconstrução tomográfica dinâmica industrial

OLIVEIRA, Eric Ferreira de 29 February 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-05-11T18:10:34Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Versão Atualizada Tese Eric Ferreira de Oliveira.pdf: 1865683 bytes, checksum: 517608a245f6372afd45b3bba78733d6 (MD5) / Made available in DSpace on 2017-05-11T18:10:34Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Versão Atualizada Tese Eric Ferreira de Oliveira.pdf: 1865683 bytes, checksum: 517608a245f6372afd45b3bba78733d6 (MD5) Previous issue date: 2016-02-29 / CNEN / O estado da arte dos métodos aplicados para processos industriais é atualmente baseado em princípios de reconstruções tomográficas clássicas desenvolvidos para padrões tomográficos de distribuições estáticas, ou seja, são limitados a processos de pouca variabilidade. Ruídos e artefatos de movimento são os principais problemas causados pela incompatibilidade nos dados gerada pelo movimento. Além disso, em processos tomográficos industriais é comum um número limitado de dados podendo produzir ruído, artefatos e não concordância com a distribuição em estudo. Um dos objetivos do presente trabalho é discutir as dificuldades que surgem da implementação de algoritmos de reconstrução em tomografia dinâmica que foram originalmente desenvolvidos para distribuições estáticas. Outro objetivo é propor soluções que visam reduzir a perda de informação temporal devido a utilização de técnicas estáticas em processos dinâmicos. No que diz respeito à reconstrução de imagem dinâmica foi realizada uma comparação entre diferentes métodos de reconstrução estáticos, como MART e FBP, quando usado para cenários dinâmicos. Esta comparação foi baseada em simulações por MCNPX, e também analiticamente, de um cilindro de alumínio que se move durante o processo de aquisição, e também com base em imagens de cortes transversais de técnicas de CFD. Outra contribuição foi aproveitar o canal triplo de cores necessário para exibir imagens coloridas na maioria dos monitores, de modo que, dimensionando adequadamente os valores adquiridos de cada vista no sistema linear de reconstrução, foi possível imprimir traços temporais na imagem tradicionalmente reconstruída. Finalmente, uma técnica de correção de movimento usado no campo da medicina foi proposto para aplicações industriais, considerando-se que a distribuição de densidade nestes cenários pode apresentar variações compatíveis com movimentos rígidos ou alterações na escala de certos objetos. A ideia é usar dados conhecidos a priori ou durante o processo, como vetor deslocamento, e então usar essas informações para melhorar a qualidade da reconstrução. Isto é feito através da manipulação adequada da matriz peso no método algébrico, isto é, ajustando-se os valores para refletir o movimento objeto do previsto ou deformação. Os resultados de todas essas técnicas aplicadas em vários experimentos e simulações são discutidos neste trabalho. / The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly reconstructed image, where the temporal trace utilizes a channel and the regular reconstruction utilizes a different one. Finally, a motion correction technique used in the medical field was proposed for industrial applications, considering that the density distribution in these scenarios may present variations compatible with rigid motions or changes in scale of certain objects. The idea is to identify in some configurations of the temporarily distributed data clues of the type of motion or deformation suffered by the object during the data acquisition, and then use this information to improve the quality of the reconstruction. This is done by appropriately manipulating the weight matrix in the algebraic method, i.e., by adjusting the values to reflect the predicted object motion or deformation. The results of all these techniques applied in several experiments and simulations are discussed in this work.
33

Direct Numerical Simulations and Fluctuating Force Simulations of Turbulent Particle-gas Suspensions

Tyagi, A January 2017 (has links) (PDF)
Turbulent gas-particle suspensions are of great practical importance in many naturally phenomena, such as dust storms and snow avalanches, as well as in industrial applications such as fluidised, circulating bed reactors and pneumatic transport. Due to the difference in mass density of about three orders of magnitude between solids and gases, the mass loading is large, but the volume fraction of the particles is usually small. Since the length scale of these flows ranges from tens of centimeters to hundreds of meters, the Reynolds number based on the flow dimension and velocity is usually large. Due to this, these flows are almost always in the turbulent regime, and the fluid velocity fluctuations are significant. The particle sizes are typically small in these applications, of the order of 100 m or less. Due to this, the Reynolds number (based on the particle size and velocity) is usually low. This implies that the fluid inertia is not important, and the flow dynamics is dominated by fluid viscosity at the particle scale. At the same time, due to the density contrast between the particles and fluid, the Stokes number (ratio of particle inertia and fluid viscosity) is large. The inertia is sufficiently large that the particles cross the fluid streamlines. In this situation, there is a two-way coupling between the fluid turbulence and the particle dynamics. The turbulent fluid velocity fluctuations result in particle velocity fluctuations due to the drag force exerted by the particles on the fluid. In turbulent gas-particle suspensions, the fluctuating velocity of the particles results in a force on the fluid, which could either enhance or dampen the turbulent velocity fluctuations. The finite size of the particles could also result in fluid velocity effects which can not be captured by considering the particles as point masses. The dynamics of turbulent particle suspensions is analysed in the limit of low particle Reynolds number and high particle Stokes number, where there is a balance between particle inertia and fluid viscosity. The turbulent gas flow in a channel is considered for definiteness, in order to analyse the effect of turbulent fluctuations, as well as the effect of cross-stream variations in the turbulent statistics. The particle size is considered to be comparable to the Kolmogorov scales, which are the smallest scales in the turbulent flow. In addition, the fluid inertia at the particle scale is neglected, and the particles are dynamics is modeled using the Stokes equations. However, inertial effects are included at the macroscopic scale, where the Navier-Stokes equations are solved by Direct Numerical Simulations (DNS) using Chebyshev-Fourier spectral techniques. There are three important objectives in the present analysis. 1. The first is to examine the turbulence modification due to the reverse force of the particles. There are two models used for the reverse force of the particles on the fluid. The first is a point force, which is modeled as a delta function in real space. Instead of using smoothing functions for the delta function, we prefer to incorporate the point force in the momentum conservation equation in spectral space. A more complicated representation proposed here involves the inclusion of the symmetric and anti-symmetric force moments, calculated from the solution of Stokes equations for the flow around the sphere. These are represented as gradients of delta functions, and are also included in the momentum conservation equations in the spectral co-ordinates. 2. The second objective is to examine the effect of particle rotation and collisions on the flow dynamics. While particle rotation is usually included in the analysis of granular flows, this is not normally included in the treatment of particle collisions. 3. The third objective is to examine whether the effect of the fluid turbulence can be modeled as a fluctuating force. When the viscous relaxation time of the particles is larger than the integral time for the fluid velocity fluctuations, the fluid velocity fluctuations can be considered as delta function correlated in time, and the effect of these fluctuations can be incorporated using a Langevin description. In this case, the diffusion coeffcients in the Langevin equation for the particles is calculated from the correlation in the fluid velocity fluctuations. The new objective here is to include both the drag force and the torque exerted on the particles in the presence of particle rotation, and to examine whether these are sufficient to capture the effect of ff fluid turbulence on the particle phase. The Direct Numerical Simulations show that there is a significant attenuation of the turbulent velocity fluctuations when the reverse force exerted by the particles is added in the fluid momentum equations, and the particles are considered to be smooth. This turbulence attenuation is greater when the particle volume fraction increases, and when the particle mass density increases. However, when particle rotation is included, the turbulent velocity fluctuations are significantly larger than those without rotation, and in come cases are close the fluctuation levels when the reverse force is included. Thus, the particle rotation has a significant enhancement on the turbulent velocity fluctuations. The attenuation in the fluid turbulence is also reflected in the magnitude of the particle fluctuating velocities. The particle fluctuating velocities are higher when the effect of particle rotation is included. The reason for this is that there is particle rotation induced due to mean fluid shear, and this rotational energy gets transformed into translational energy in inter-particle collisions. The effect of inclusion of the symmetric and anti-symmetric force moments does not result in a significant change in the turbulence intensities for the range of volume fractions and mass densities considered here. There is a small but discernible increase in the turbulence for the largest volume fraction and mass density considered here, but this increase is much smaller than the significant turbulence attenuation due to the inclusion of particle rotation. Systematic trends are also observed in the particle linear and angular velocity distributions. The particle stream-wise linear velocity distribution, and the span-wise angular velocity distribution are broader than a Gaussian distribution near the zero, and exhibit steep decrease at larger velocity. They are also asymmetric, and the distribution depends on the location across the channel. The distribution of the cross-stream and span-wise linear velocity and the stream-wise and cross-stream angular velocity, is narrower than a Gaussian distribution at the center, and exhibits long tails for high velocities. Thus, there are systematic variations in the distribution functions for both the linear and angular velocities, which need to be included in kinetic theory descriptions for the particle phase. The fluctuating force model has also been simulated, where particle dynamics is explicitly simulated, the fluid velocity fields are not simulated, but are modeled as fluctuating forces and torques acting on the particles. The variance in the fluctuating force and torque are determined from the correlations in the fluid velocity and the vorticity fields, and these are modified to include the turbulence attenuation due to the reverse force exerted by the particles. The fluctuating force simulations do accurately capture the trends observed in the mean and fluctuating velocities. They are also able to capture the non-Gaussian nature of the linear and angular velocity distributions of the particles, even though the random forcing is considered to be a Gaussian function. Thus, the fluctuating force formulation can be used to accurately capture the effect of the fluid on the particles, only if the forces are modified to include the effect of turbulence attenuation due to the reverse force exerted by the particles.
34

Application Of In Vivo Flow Profiling To Stented Human Coronary Arteri

Nanda, Hitesh 01 January 2004 (has links)
The study applies in vivo technique for profiling hemodynamics and wall shear stress (WSS) distribution in human coronary arteries. The methodology involves fusion of 2D Intra Vascular Ultra Sound and Bi-plane angiograms to reproduce the 3D arterial geometry. This geometry is then used in a Computational Fluid Dynamics (CFD) module for flow modeling. The Walburn and Schneck constitutive relation was used to represent the non-Newtonian blood rheology. The methodology is applied to study the relationship between WSS and Neointimal Hyperplasia (NIH) in two groups of diabetic patients after being treated separately with bare metal stents (BMS) and Sirolimus Eluting Stents (SES). The stent assignments were blinded until the end of the study. The study was repeated for the patients after 9 months. The predicted WSS ranged from (0.1- 8 N/m2) and was categorized into five classes: low ( < 1 N/m2); low-normal (1-2 N/m2); normal (2-3 N/m2); high-normal (3-4 N/m2); high ( > 4 N/m2). The results indicate NIH in 5 of the patients treated with BMS and none in SES cases. These results correlate with our predicted WSS distribution.
35

Benthic Community Structure Response to Flow Dynamics in Tropical Island and Temperate Continental Streams

Gorbach, Kathleen R. January 2012 (has links)
No description available.
36

A Mathematical Model of Graphene Nanostructures

Rhoads, Daniel Joseph 15 September 2015 (has links)
No description available.
37

Analysis of Unsteady Incompressible Potential Flow Over a Swimming Slender Fish and a Swept Wing Tail

Nathan, Vinay January 2015 (has links) (PDF)
This thesis deals with computing the pressure distribution around a swimming slender fish and the thrust generated by its flapping motion. The body of the fish is modeled as a missile like slender body to which a tail is attached that is modeled as a swept wing. The tail is attached to the tip of the slender body and maintains its slope with it. The motion for the swimming fish is prescribed. The fluid flow is modeled as an unsteady potential flow problem with the flow around the slender body modeled as flow over an array of cylinders of varying radii and the flow over the swept wing modeled using the vortex panel method. The pressure distribution is computed using the unsteady Bernoulli equation. The overall thrust & drag for different parameters are studied and compared
38

In-vivo-Flussdynamik des Hirnwassers im Spinalkanal - eine Phasenkontrast-Echtzeit-MRT-Studie / In vivo cerebrospinal fluid flow dynamics within the spinal canal: A real‐time phase‐contrast magnetic resonance imaging study

Konopka, Mareen Kathrin 10 October 2019 (has links)
No description available.
39

Single Cavity Trapped Vortex Combustor Dynamics : Experiments & Simulations

Singhal, Atul 07 1900 (has links)
Trapped Vortex Combustor (TVC) is a relatively new concept for potential use in gas turbine engines addressing ever increasing demands of high efficiency, low emissions, low pressure drop, and improved pattern factor. This concept holds promise for future because of its inherent advantages over conventional swirl-stabilized combustors. The main difference between TVC and a conventional gas turbine combustor is in the way combustion is stabilized. In conventional combustors, flame is stabilized because of formation of toroidal flow pattern in the primary zone due to interaction between incoming swirling air and fuel flow. On the other hand, in TVC, there is a physical cavity in the wall of combustor with continuous injection of air and fuel leading to stable and sustained combustion. Past work related to TVC has focussed on use of two cavities in the combustor liner. In the present study, a single cavity combustor concept is evaluated through simulation and experiments for applications requiring compact combustors such as Unmanned Aerial Vehicles (UAVs) and cruise missiles. In the present work, numerical simulations were initially performed on a planar, rectangular single-cavity geometry to assess sensitivity of various parameters and to design a single-cavity TVC test rig. A water-cooled, modular, atmospheric pressure TVC test rig is designed and fabricated for reacting and non-reacting flow experiments. The unique features of this rig consist of a continuously variable length-to-depth ratio (L/D) of the cavity and optical access through quartz plates provided on three sides for visualization. Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel, and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation. Reacting flow experiments for the selected cases indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. The pressure drop across the single-cavity TVC is observed to be lower as compared to conventional combustors. Temperatures are measured at the exit using thermocouples and corrected for radiative losses. Species concentrations are measured at the exit using an exhaust gas analyzer. The combustion efficiency is observed to be around 98-99% and the pattern factor is observed to be in the range of 0.08 to 0.13. High-speed imaging made possible by the optical access indicates that the overall combustion is fairly steady, and there is no major vortex shedding downstream. This enabled steady-state simulations to be performed for the selected cases. Insight from simulations has highlighted the importance of air and fuel injection strategies in the cavity. From a mixing and combustion efficiency standpoint, it is desirable to have a cavity vortex that is anti-clockwise. However, the natural tendency for flow over a cavity is to form a vortex that is clockwise. The tendency to blow-out at higher inlet flow velocities is thought to be because of these two opposing effects. This interaction helps improve mixing, however leads to poor flame stability unless cavity-air velocity is strong enough to support a strong anti-clockwise vortex in the cavity. This basic understating of cavity flow dynamics can be used for further design improvements in future to improve flame stability at higher inlet flow velocities and eventually lead to the development of a practical combustor.
40

Deformation of a Graphene Sheet Driven by Lattice Mismatch with a Supporting Substrate

Stanek, Lucas James 20 November 2018 (has links)
No description available.

Page generated in 0.0541 seconds