• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VO2 on-kinetics in isolated canine muscle in situ during slowed convective O2 delivery

Goodwin, Matthew Lawrence, Gladden, L. Bruce, January 2008 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Vita. Includes bibliographical references (p. 67-76).
2

Low load resistance training with blood flow restriction : adaptations and mechanisms in young and old people

Patterson, Stephen January 2011 (has links)
Low load resistance training (LLRT) with blood flow restriction (BFR) is a novel form of exercise that has been demonstrated to increase muscle mass and strength. Combined with the fact that as individuals age they lose both of these parameters, LLRT with BFR has been put forward as a method to help reverse/prevent the associated sarcopenia of ageing. This research investigated the effect the effect of LLRT with BFR on muscle strength firstly in younger people and then an older population group following 4 weeks of training. Muscle function measurements of young and old people included dynamic strength, identified as one repetition maximum (1 RM), isometric strength and isokinetic torque at a range of velocities (0.52 2.09 rad.s-1). Vascular adaptations were also measured using venous occlusion plethysmography to assess rest blood flow (Rbf) and post occlusive reactive hyperemia (PObf). The mechanisms behind any adaptations were measured following acute responses of plasma hormones and growth factors (cortisol, growth hormone (GH), insulin like growth factor 1 (IGF-1), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF)) as well as local skeletal muscle gene expression (IGF-1Ea and MGF mRNA) to LLRT with BFR. LLRT with BFR increased (P < 0.05) all measurements of muscle strength by 13 30% in both young and older people. PObf was also increased (P < 0.05) following 4 weeks of LLRT with BFR in both population groups. Acute responses to LLRT with BFR identified an increase (P < 0.05) in GH and VEGF in older people. These are similar response to those seen in the young. Finally local gene expression of MGF mRNA was elevated (P < 0.05) 24 hours post LLRT with BFR in both young and older people. Any changes in muscle and blood flow adaptations may be as a result of increased hormones and growth factors at a circulation and local level. Key words: Blood flow restriction, blood flow, muscle strength, growth hormone, IGF-1
3

Squeezing the Muscle : Compression Clothing and Muscle Metabolism during Recovery from High Intensity Exercise

Sperlich, B., Born, D. -P, Kaskinoro, K., Kalliokoski, K. K., Laaksonen, Marko January 2013 (has links)
The purpose of this experiment was to investigate skeletal muscle blood flow and glucose uptake in m. biceps (BF) and m. quadriceps femoris (QF) 1) during recovery from high intensity cycle exercise, and 2) while wearing a compression short applying ~37 mmHg to the thigh muscles. Blood flow and glucose uptake were measured in the compressed and non-compressed leg of 6 healthy men by using positron emission tomography. At baseline blood flow in QF (P = 0.79) and BF (P = 0.90) did not differ between the compressed and the non-compressed leg. During recovery muscle blood flow was higher compared to baseline in both compressed (P&lt;0.01) and non-compressed QF (P&lt;0.001) but not in compressed (P = 0.41) and non-compressed BF (P = 0.05; effect size = 2.74). During recovery blood flow was lower in compressed QF (P&lt;0.01) but not in BF (P = 0.26) compared to the non-compressed muscles. During baseline and recovery no differences in blood flow were detected between the superficial and deep parts of QF in both, compressed (baseline P = 0.79; recovery P = 0.68) and non-compressed leg (baseline P = 0.64; recovery P = 0.06). During recovery glucose uptake was higher in QF compared to BF in both conditions (P&lt;0.01) with no difference between the compressed and non-compressed thigh. Glucose uptake was higher in the deep compared to the superficial parts of QF (compression leg P = 0.02). These results demonstrate that wearing compression shorts with ~37 mmHg of external pressure reduces blood flow both in the deep and superficial regions of muscle tissue during recovery from high intensity exercise but does not affect glucose uptake in BF and QF. © 2013 Sperlich et al. / <p>:doi 10.1371/journal.pone.0060923</p>

Page generated in 0.0456 seconds