1 |
A Flow Control System for a Novel Concept of Variable Delivery External Gear PumpVacca, Andrea, Devendran, Ram Sudarsan 02 May 2016 (has links) (PDF)
This paper describes a novel concept for a low cost variable delivery external gear pump (VD-EGP). The proposed VD-EGP is based on the realization of a variable timing for the connections of the internal displacement chambers with the inlet and outlet ports. With respect to a standard EGP, an additional element (slider) is used along with asymmetric gears to realize the variable timing principle. Previously performed tests confirmed the validity of the concept, for a design capable of varing the flow in the 65%-100% range. Although the VD-EGP concept is suitable for various flow control system typologies (manual, electro-actuated, hydraulically flow- or pressure- compensated), this paper particularly details the design and the test results for a prototype that includes both a manual flow control system and a pressure compensator. Flow vs pressure and volumetric efficiency curves are discussed along with transient (outlet flow fluctuation) features of the VD-EGP.
|
2 |
Experimentální ověření ejektoru a vytvoření matematického modelu. / Experimental verification of ejector and creation of mathematical model.Strmiska, Michal January 2008 (has links)
This diploma thesis deals with the area of ejectors. In the intoduction, an ejector is classed as an hydraulic machine. There is also an introduction of the principle and application of this machine there. The next part describes two different ways of calculation and there is a suggestion how to get characteristics, that were achieved by calculation in MS Excel, projected. The purpose of this diploma thesis is to confront this mathematical model with the experiment done in school laboratory at Kaplan department of hydraulic machines. The description of this experiment and the evaluation procedure of measured values is described in the final part of this diploma thesis.
|
3 |
A Flow Control System for a Novel Concept of Variable Delivery External Gear PumpVacca, Andrea, Devendran, Ram Sudarsan January 2016 (has links)
This paper describes a novel concept for a low cost variable delivery external gear pump (VD-EGP). The proposed VD-EGP is based on the realization of a variable timing for the connections of the internal displacement chambers with the inlet and outlet ports. With respect to a standard EGP, an additional element (slider) is used along with asymmetric gears to realize the variable timing principle. Previously performed tests confirmed the validity of the concept, for a design capable of varing the flow in the 65%-100% range. Although the VD-EGP concept is suitable for various flow control system typologies (manual, electro-actuated, hydraulically flow- or pressure- compensated), this paper particularly details the design and the test results for a prototype that includes both a manual flow control system and a pressure compensator. Flow vs pressure and volumetric efficiency curves are discussed along with transient (outlet flow fluctuation) features of the VD-EGP.
|
4 |
Improved Techniques for Cardiovascular Flow ExperimentsJanuary 2015 (has links)
abstract: Aortic pathologies such as coarctation, dissection, and aneurysm represent a
particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta.
This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases.
The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model.
The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2015
|
5 |
Design Improvements On Mixed Flow Pumps By Means Of Computational Fluid DynamicsOzgen, Onur 01 December 2006 (has links) (PDF)
The demand on high efficiency pumps leads the manufacturers to develop new design and manufacturing techniques for rotodynamic pumps. Computational Fluid
Dynamics (CFD) software are started to be used during the design periods for this reason in order to validate the designs before the pumps are produced. However the integration process of CFD software into the design procedure should be made carefully in order to improve the designs.
In this thesis, the CFD software is aimed to be integrated into the pump design procedure. In this frame, a vertical turbine type mixed flow pump is aimed to be designed and design improvements are intended to be made by applying numerical
experimentations on the pump. The pump that is designed in this study can deliver 115 l/s flow rate against the head of 16 mWC in 2900 rpm. The effects of various parameters in the design are investigated by the help of CFD software during the
design and best performance characteristics of the pump are aimed to be reached.
The pump that is designed in this study is manufactured and tested in Layne Bowler Pumps Company Inc. The design point of the pump is reached within the tolerance limits given in the related standard.
In addition, the results of actual test and numerical experimentation are compared and found to be in agreement with each other. The integration of CFD code to the design procedure is found quite useful by means of shortening design periods, lowering manufacturing and testing costs. In deed the effects of the design parameters are understood better by applying numerical experimentations to the designed pump.
|
6 |
Design And Performance Evaluation Of Mixed Flow Pumps By Numerical Experimentation And Axial Thrust InvestigationCirit, Ali 01 October 2007 (has links) (PDF)
In this thesis a vertical turbine mixed flow pump that has a flow rate of 40 l/s and 16 mwc head at 2900 rpm is designed. Effect of design parameters are investigated and flow inside the pump is analyzed with the help of numerical experimentations. The designed pump is manufactured and tested in Layne Bowler Pumps Company and completed in TÜ / BiTAK - TEYDEB project. Pump is designed in the tolerance limits that are defined in the standard TS EN ISO 9906. Numerical experimentation results for performance charecteristics show the same trend with the test results.
In addition, axial thrust measurements are done on the designed pump with using load cells. Effect of balancing holes and balancing ring are investigated. Balancing holes are drilled at various diameters at the back side of the impellers and its effect is analyzed on the pump performance characteristics. Test results are compared with different approaches.
|
7 |
Využití absorpčních systémů v teplárenství / Utilization of absorption systems in the heating systemsVidlák, David January 2018 (has links)
Main goal of this work is familiarization with basic features of absorption heat pumps and it’s growing importance on the market. In the first part of the work there is a research for clarifying facts associated with such pumps. In the introduction there are descriptions of basic information from the field of heating industry and its connections to our systems. Next there is a brief analysis of price changes in electricity and heat in the last five years. Main part of the analytical section is a description of the used absorption system. Second part of the work is focused on the calculation of the absorption system itself. First there is calculated internal and external part of the device according to the parameters from GE Power s.r.o. After this step there are parametric studies based on changes of key parameters of the default device for a demonstration of the behavior of a heating pump. In the end of the work there is a integration of the unit into the heating cycle for variations including flue gas condenser and using a cooling water from the turbine condenser.
|
Page generated in 0.039 seconds