• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 77
  • 67
  • 16
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 481
  • 481
  • 431
  • 117
  • 108
  • 106
  • 96
  • 95
  • 79
  • 71
  • 69
  • 69
  • 62
  • 62
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A direct-drive wave energy converter with contactless force transmission system /

Agamloh, Emmanuel B. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2006. / Printout. Includes bibliographical references (leaves 104-109). Also available on the World Wide Web.
22

An Adaptively refined Cartesian grid method for moving boundary problems applied to biomedical systems

Krishnan, Sreedevi. Udaykumar, H. S. January 2006 (has links)
Thesis (Ph.D.)--University of Iowa, 2006. / Includes separate files for thesis supplements. Supervisor: H.S. Udaykumar. Includes bibliographical references (leaves 182-195).
23

Investigation Of Multiscale Fluid Structure Interaction Modeling Of Flow In Arterial Systems

Sotelo, Sebastian 01 January 2013 (has links)
The study of hemodynamic patterns in large blood vessels, such as the ascending aortic artery, brachiocephalic trunk, right carotid artery and right subclavian artery presents the challenging complexity of vessel wall compliance induced by the high levels of shear stress gradients and blood flow pulsatility. Accurate prediction of hemodynamics in such conditions requires a complete Fluid Structure Interaction (FSI) analysis that couples the fluid flow behavior throughout the cardiac cycle with the structural response of the vessel walls. This research focuses on the computational study of a Multiscale Fluid-Structure Interaction on the arterial wall by coupling Finite Volumes Method (FVM) predictions of the Fluid Dynamics within the artery with Finite Elements Method (FEM) predictions of the Elasto-Dynamics response of the arterial walls and 1-D closed loop electrical circuit system to generate the dynamic pressure pulse. To this end, a commercial FVM Computational Fluid Dynamics (CFD) code (STAR-CCM+ 7.09.012) will be coupled through an external interface with a commercial FEM Elasto-Dynamics code (ABAQUS V6.12). The coupling interface is written in such a way that the wall shear stresses and pressures predicted by the CFD analysis will be passed as boundary conditions to the FEM structural solver. The deformations predicted by the FEM structural solver will be passed to the CFD solver to update the geometry in an implicit manner before the following iteration step. The coupling between the FSI and the 1-D closed loop lump parameter circuit updated the pressure pulse and mass flow rates generated by the circuit in an explicit manner after the periodic solution in the FSI analysis had settled. The methodology resulting from this study will be incorporated in a larger collaborative research program between UCF and ORHS that entails optimization of surgical implantation of Left Ventricular Assist iv Devices (LVAD) cannulae and bypass grafts with the aim to minimize thrombo-embolic events. Moreover, the work proposed will also be applied to another such collaborative project focused on the computational fluid dynamics modeling of the circulation of congenitally affected cardiovascular systems of neonates, specifically the Norwood and Hybrid Norwood circulation of children affected by the hypoplastic left heart syndrome.
24

Confinement Effects on the Hydrodynamic Performance of a Fully-Passive Oscillating-Foil Turbine

Mann, Sierra 05 August 2022 (has links)
Current emissions targets have created a strong need for introducing more renewable energy sources into the energy mixture. The oscillating-foil turbine (OFT) has gained interest in recent years for renewable energy extraction. Experimental and numerical studies on the OFT experience different levels of wall confinement than what may be experienced at a natural site. Walls in close proximity will direct the flow at the turbine, causing a greater perceived velocity by the turbine, and thus a higher theoretical performance. This work aims to increase understanding of flow confinement on the fully-passive OFT. This is motivated by (1) enabling comparison between turbine performance operating at different confinement levels, and (2) potentially providing a means to enhance performance by designing a turbine which uses confinement to its advantage. The experiments were performed using a NACA0015 foil with an aspect ratio of 7.5 in a water tunnel equipped with adjustable lateral walls. The foil was undergoing passive oscillations in pitch and heave degrees of freedom. The kinematic parameters of the foil oscillations and its energy harvesting performance were measured at eight blockage ratios, ranging from 22% to 60%, for two structural configurations of the turbine. Quantitative flow imaging was performed using particle image velocimetry (PIV), at three confinement levels, to observe the timing of the leading-edge vortex (LEV) formation and shedding throughout the foil oscillation cycle. Loading on the foil was related to the flow structure by calculating the moments of vorticity with respect to the pitching axis of the foil. The results showed that the efficiency and the power coefficient increased with increasing confinement. This was expected due to the higher incident velocity on the foil in the presence of the confining walls. At the highest level of confinement, the close proximity of the foil to the walls during parts of the oscillation cycle resulted in a change in the phase lag between the pitching and the heaving components of the foil motion. In turn, this shift in the kinematic parameters led to a sharp decrease in the energy-extraction performance of the turbine. / Graduate
25

Computational study of high order numerical schemes for fluid-structure interaction in gas dynamics.

Pedro, Jose Caluyna. 17 December 2013 (has links)
Solving the fluid-structure interaction (FSI) problems is particularly challenging. This is because the coupling of the fluid and structure may require different solvers in different points of the solution domain, and with different mesh requirements. In this thesis, a partitioned approach is considered. Two solvers are employed to deal with each part of the problem (fluid and structure), where the interaction process is realized via exchanging information from the fluid-structure interface in a staggered fashion. One of the advantages of this approach is that we can take advantage of the existing algorithms that have been used for solving fluid or structural problems, which leads a reduction in the code development time, Hou (2012). However, it requires careful implementation so that spurious results in terms of stability and accuracy can be avoided. We found that most fluid-structure interaction computations through a staggered approach are based on at most second order time integration methods. In this thesis we studied the performance of some high order fluid and structure dynamic methods, when applied in a staggered approach to an FSI problem in a structure prediction way by combining predictors with time integration schemes to obtain stable schemes. Nonlinear Euler equations for gas dynamics were investigated and the analysis was realized through the piston problem. An adapted one-dimensional high order finite volume WENO₃ scheme for nonlinear hyperbolic conservation laws-Dumbser (2007a), Dumbser et al. 2007b)-was considered and a numerical flux was proposed. The numerical results of the proposed method show the non-oscillatory property when compared with traditional numerical methods such as the Local Lax-Friedrichs. So far to our knowledge, the WENO₃₋ as proposed in this work- has not been applied to FSI problems. Thus, it was proposed to discretize the fluid domain in space, and in order to adapt it to a moving mesh was reformulated to couple with an Arbitrary Lagrangian Eulerian (ALE) approach. To integrate in time the structure we started by using Newmark schemes as well as the trapezoidal-rule backward differentiation formulae of order 2 (TR − BDF2). Two study cases were carried out by taking into account the transient effects on the fluid behaviour. In the first case, we only consider the structural mass in the dynamic coupled system and in the second case, a quasi-steady fluid was considered. In order to test the performance of the structural solvers, simulations were carried out, firstly, without the contribution of fluid mass, and then a comparative study of the performance of various structure solvers in a staggered approach framework were realized in order to study the temporal accuracy for the partitioned fluid-structure interaction coupling. For a quasi-steady fluid case, the oscillation frequency of the coupled system was successfully estimated using the TR-BDF2 scheme, and the coupled system was solved for various Courant numbers in a structural predictor fashion. The results showed better performance of the TR-BDF2 scheme. Newmark’s schemes as well as the TR-BDF2 are only second order accuracy. However, the Newmark (average acceleration) is traditionally preferred by researchers as a structure solver in a staggered approach for FSI problems, although higher order schemes do exist. van Zuijlen (2004), in his partitioned algorithm proposed the explicit singly diagonal implicit Runge-Kutta (ESDIRK) family of schemes of order 3 to 5 to integrate both fluid and structure. Therefore in this work, these schemes were considered and applied as structural solvers. Their performance was studied through numerical experiments, and comparisons were realized with the performance of the traditional Newmark’s schemes. The results show that although their computational cost is high, they present a high order of accuracy. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
26

ASSESSING THE ROLE OF BIOMECHANICAL FLUID–STRUCTURE INTERACTIONS IN CEREBRAL ANEURYSM PROGRESSION VIA PATIENT-SPECIFIC COMPUTATIONAL MODELS

Tanmay Chandrashekhar Shidhore (12891842) 20 June 2022 (has links)
<p>  </p> <p>Three key challenges in developing advanced image-based computational models of cerebral aneurysms are: (i) disentangling the effect of biomechanics and confounding clinical risk factors on aneurysmal progression, (ii) accounting for arterial wall mechanics, and (iii) incorporating the effect of surrounding tissue support on vessel motion and deformation. This thesis addresses these knowledge gaps by developing fluid-structure interaction (FSI) models of subject-specific geometries of cerebral aneurysms to elucidate the effect of coupled hemodynamics and biomechanics. A consistent methodology for obtaining physiologically realistic computational FSI models from standard-of-care imaging data is developed. In this process, a novel technique to estimate heterogeneous arterial wall thickness in the absence of subject-specific arterial wall imaging data is proposed. To address a limitation in the mesh generation workflow of the state-of-the-art cardiovascular flow modeling tool SimVascular, generation of meshes with boundary-layer mesh refinement near the blood-vessel wall interface is proposed for computational geometries with nonuniform wall thickness. Computational murine models of thoracic aortic aneurysms were developed using the proposed methodology. These models were used to inform external tissue support boundary conditions for human cerebral aneurysm subjects via a scaling analysis. Then, the methodology was applied to subjects with multiple unruptured cerebral aneurysms. A comparative computational FSI analysis of aneurysmal biomechanics was performed for each subject-specific pair of computational models for the stable and growing aneurysms, which act as self-controls for confounding clinical risk factors. A higher percentage of area exposed to low shear and high median-peak-systolic arterial wall deformation, each by factors of 1.5 to 2, was observed in growing aneurysms, compared to stable ones. Furthermore, a novel metric – the oscillatory stress index (OStI) – was defined and proposed to indicate locations of oscillating arterial wall stresses. Growing aneurysms demonstrated significant areas with a combination of low wall shear and low OStI, which were hypothesized to be associated with regions of collagen degradation and remodeling. On the other hand, such regions were either absent (or were a small percentage of the total aneurysmal area) in the stable cases. This thesis, therefore, provides a groundwork for future studies, with larger patient cohorts, which will evaluate the role of these biomechanical parameters in cerebral aneurysm growth.</p>
27

The integration of two stand-alone codes to simulate fluid-structure interaction in breakwaters / Jan Hendrik Grobler

Grobler, Jan Hendrik January 2013 (has links)
Harbours play a vital role in the economies of most countries since a significant amount of international trade is conducted through them. Ships rely on harbours for the safe loading and unloading of cargo and the harbour infrastructure relies on breakwaters for protection. As a result, the design and analysis of breakwaters receives keen interest from the engineering community. Coastal engineers need an easy-to-use tool that can model the way in which waves interact with large numbers of interlocking armour units. Although the study of fluid–structure interaction generates a lot of research activity, none of the reviewed literature describes a suitable method of analysis. The goal of the research was to develop a simulation algorithm that meets all the criteria by allowing CFD software and physics middleware to work in unison. The proposed simulation algorithm used Linux “shell scripts” to coordinate the actions of commercial CFD software (Star-CCM+) and freely available physics middleware (PhysX). The CFD software modelled the two-phase fluid and provided force and moment data to the physics middleware so that the movement of the armour units could be determined. The simulation algorithm was verified numerically and experimentally. The numerical verification exercise was of limited value due to unresolved issues with the CFD software chosen for the analysis, but it was shown that PhysX responds appropriately given the correct force data as input. Experiments were conducted in a hydraulics laboratory to study the interaction of a solitary wave and cubes stacked on a platform. Fiducial markers were used to track the movement of the cubes. The phenomenon of interest was the transfer of momentum from the wave to the rigid bodies, and the results confirmed that the effect was captured adequately. The study concludes with suggestions for further study. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
28

The integration of two stand-alone codes to simulate fluid-structure interaction in breakwaters / Jan Hendrik Grobler

Grobler, Jan Hendrik January 2013 (has links)
Harbours play a vital role in the economies of most countries since a significant amount of international trade is conducted through them. Ships rely on harbours for the safe loading and unloading of cargo and the harbour infrastructure relies on breakwaters for protection. As a result, the design and analysis of breakwaters receives keen interest from the engineering community. Coastal engineers need an easy-to-use tool that can model the way in which waves interact with large numbers of interlocking armour units. Although the study of fluid–structure interaction generates a lot of research activity, none of the reviewed literature describes a suitable method of analysis. The goal of the research was to develop a simulation algorithm that meets all the criteria by allowing CFD software and physics middleware to work in unison. The proposed simulation algorithm used Linux “shell scripts” to coordinate the actions of commercial CFD software (Star-CCM+) and freely available physics middleware (PhysX). The CFD software modelled the two-phase fluid and provided force and moment data to the physics middleware so that the movement of the armour units could be determined. The simulation algorithm was verified numerically and experimentally. The numerical verification exercise was of limited value due to unresolved issues with the CFD software chosen for the analysis, but it was shown that PhysX responds appropriately given the correct force data as input. Experiments were conducted in a hydraulics laboratory to study the interaction of a solitary wave and cubes stacked on a platform. Fiducial markers were used to track the movement of the cubes. The phenomenon of interest was the transfer of momentum from the wave to the rigid bodies, and the results confirmed that the effect was captured adequately. The study concludes with suggestions for further study. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
29

Application of immersed boundary method to flexible riser problem

Madani Kermani, Seyed Hossein January 2014 (has links)
In the recent decades the Fluid-Structure Interaction (FSI) problem has been of great interest to many researchers and a variety of methods have been proposed for its numerical simulation. As FSI simulation is a multi-discipline and a multi-physics problem, its full simulation consists of many details and sub-procedures. On the other hand, reliable FSI simulations are required in various applications ranging from hemo-dynamics and structural engineering to aero-elasticity. In hemo-dynamics an incompressible fluid is coupled with a flexible structure with similar density (e.g. blood in arteries). In aero-elasticity a compressible fluid interacts with a stiff structure (e.g. aircraft wing) or an incompressible flow is coupled with a very light structure (e.g. Parachute or sail), whereas in some other engineering applications an incompressible flow interacts with a flexible structure with large displacement (e.g. oil risers in offshore industries). Therefore, various FSI models are employed to simulate a variety of different applications. An initial vital step to conduct an accurate FSI simulation is to perform a study of the physics of the problem which would be the main criterion on which the full FSI simulation procedure will then be based. In this thesis, interaction of an incompressible fluid flow at low Reynolds number with a flexible circular cylinder in two dimensions has been studied in detail using some of the latest published methods in the literature. The elements of procedures have been chosen in a way to allow further development to simulate the interaction of an incompressible fluid flow with a flexible oil riser with large displacement in three dimensions in future. To achieve this goal, a partitioned approach has been adopted to enable the use of existing structural codes together with an Immersed Boundary (IB) method which would allow the modelling of large displacements. A direct forcing approach, interpolation / reconstruction, type of IB is used to enforce the moving boundary condition and to create sharp interfaces with the possibility of modelling in three dimensions. This provides an advantage over the IB continuous forcing approach which creates a diffused boundary. And also is considered as a preferred method over the cut cell approach which is very complex in three dimensions with moving boundaries. Different reconstruction methods from the literature have been compared with the newly proposed method. The fluid governing equation is solved only in the fluid domain using a Cartesian grid and an Eulerian approach while the structural analysis was performed using Lagrangian methods. This method avoids the creation of secondary fluid domains inside the solid boundary which occurs in some of the IB methods. In the IB methods forces from the Eulerian flow field are transferred onto the Lagrangian marker points on the solid boundary and the displacement and velocities of the moving boundary are interpolated in the flow domain to enforce no-slip boundary conditions. Various coupling methods from the literature were selected and improved to allow modelling the interface and to transfer the data between fluid and structure. In addition, as an alternative method to simulate FSI for a single object in the fluid flow as suggested in the literature, the moving frame of reference method has been applied for the first time in this thesis to simulate Fluid-Structure interaction using an IB reconstruction approach. The flow around a cylinder in two dimensions was selected as a benchmark to validate the simulation results as there are many experimental and analytical results presented in the literature for this specific case.
30

Cardiac acoustics : understanding and detecting heart murmurs

Kay, Edmund January 2018 (has links)
No description available.

Page generated in 0.0549 seconds