• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Modelling and Simulation Optimization of Geothermal Reservoirs Using the Tough2 Family of Codes

Vasini, Ester Maria <1986> January 1900 (has links)
In order to improve the reservoir engineering activities and, in particular, to optimize numerical modelling and simulation of geothermal reservoirs using the TOUGH family of codes, it has been decided to use the software T2Well for the interpretation of well-tests, coupling T2Well with the equation of state module EWASG, which describes the typical thermodynamic condition in high enthalpy geothermal reservoirs. T2Well-EWASG has been coupled and tested through the typical process of verification and validation. The application of T2Well-EWASG for the interpretation of well-tests related to the slim hole WW-01 drilled in the Wotten Waven Field (Commonwealth of Dominica) proves that it can be used as a tool for integrated interpretation of surface and downhole measurements collected during the performance of production tests in geothermal wells. The strength of this tool is that it allows to reduce the different possible solutions (in terms of reservoir characterization) within an acceptable error, by allowing the interpretation of surface and downhole measurements in conjunction, instead of separately. From this point of view T2Well-EWASG can effectively be used as a tool which allows an improvement of reservoir engineering activities. Finally, the huge amount of data managed during these activities has permitted to test and project the improvement of pre- and post- processing tools specific for TOUGH2 created by the geothermal research group of DICAM. In particular, the pre- and post-processing tools have been validated with a case study dealing with the migration of non-condensable gases in deep sedimentary formation.
2

Studio del moto dei fluidi in mezzi porosi in regime non-darcy

Tabaroni, Gian Carlo <1976> 17 May 2007 (has links)
No description available.
3

Evaluation of alkali flooding combined with intermittent flow in carbonate reservoir

Srisuriyachai, Falan <1980> 16 April 2008 (has links)
The majority of carbonate reservoir is oil-wet, which is an unfavorable condition for oil production. Generally, the total oil recovery after both primary and secondary recovery in an oil-wet reservoir is low. The amount of producible oil by enhanced oil recovery techniques is still large. Alkali substances are proven to be able to reverse rock wettability from oil-wet to water-wet, which is a favorable condition for oil production. However, the wettability reversal mechanism would require a noneconomical aging period to reach the maximum reversal condition. An intermittent flow with the optimum pausing period is then combined with alkali flooding (combination technique) to increase the wettability reversal mechanism and as a consequence, oil recovery is improved. The aims of this study are to evaluate the efficiency of the combination technique and to study the parameters that affect this method. In order to implement alkali flooding, reservoir rock and fluid properties were gathered, e.g. interfacial tension of fluids, rock wettability, etc. The flooding efficiency curves are obtained from core flooding and used as a major criterion for evaluation the performance of technique. The combination technique improves oil recovery when the alkali concentration is lower than 1% wt. (where the wettability reversal mechanism is dominant). The soap plug (that appears when high alkali concentration is used) is absent in this combination as seen from no drop of production rate. Moreover, the use of low alkali concentration limits alkali loss. This combination probably improves oil recovery also in the fractured carbonate reservoirs in which oil is uneconomically produced. The results from the current study indicate that the combination technique is an option that can improve the production of carbonate reservoirs. And a less quantity of alkali is consumed in the process.
4

Valutazione delle performance degli scalpelli da perforazione: studi teorici, analisi dati e valutazioni tecnico-economiche

Magagni, Matteo <1975> 16 April 2008 (has links)
The study is aimed to calculate an innovative numerical index for bit performance evaluation called Bit Index (BI), applied on a new type of bit database named Formation Drillability Catalogue (FDC). A dedicated research programme (developed by Eni E&P and the University of Bologna) studied a drilling model for bit performance evaluation named BI, derived from data recorded while drilling (bit records, master log, wireline log, etc.) and dull bit evaluation. This index is calculated with data collected inside the FDC, a novel classification of Italian formations aimed to the geotechnical and geomechanical characterization and subdivisions of the formations, called Minimum Interval (MI). FDC was conceived and prepared at Eni E&P Div., and contains a large number of significant drilling parameters. Five wells have been identified inside the FDC and have been tested for bit performance evaluation. The values of BI are calculated for each bit run and are compared with the values of the cost per metre. The case study analyzes bits of the same type, diameters and run in the same formation. The BI methodology implemented on MI classification of FDC can improve consistently the bit performances evaluation, and it helps to identify the best performer bits. Moreover, FDC turned out to be functional to BI, since it discloses and organizes formation details that are not easily detectable or usable from bit records or master logs, allowing for targeted bit performance evaluations. At this stage of development, the BI methodology proved to be economic and reliable. The quality of bit performance analysis obtained with BI seems also more effective than the traditional “quick look” analysis, performed on bit records, or on the pure cost per metre evaluation.
5

Valorisation of organic waste: new developments from proton nuclear magnetic resonance characterization

Vannini, Marianna <1986> 21 May 2015 (has links)
The last half-century has seen a continuing population and consumption growth, increasing the competition for land, water and energy. The solution can be found in the new sustainability theories, such as the industrial symbiosis and the zero waste objective. Reducing, reusing and recycling are challenges that the whole world have to consider. This is especially important for organic waste, whose reusing gives interesting results in terms of energy release. Before reusing, organic waste needs a deeper characterization. The non-destructive and non-invasive features of both Nuclear Magnetic Resonance (NMR) relaxometry and imaging (MRI) make them optimal candidates to reach such characterization. In this research, NMR techniques demonstrated to be innovative technologies, but an important work on the hardware and software of the NMR LAGIRN laboratory was initially done, creating new experimental procedures to analyse organic waste samples. The first results came from soil-organic matter interactions. Remediated soils properties were described in function of the organic carbon content, proving the importance of limiting the addition of further organic matter to not inhibit soil processes as nutrients transport. Moreover NMR relaxation times and the signal amplitude of a compost sample, over time, showed that the organic matter degradation of compost is a complex process that involves a number of degradation kinetics, as a function of the mix of waste. Local degradation processes were studied with enhanced quantitative relaxation technique that combines NMR and MRI. The development of this research has finally led to the study of waste before it becomes waste. Since a lot of food is lost when it is still edible, new NMR experiments studied the efficiency of conservation and valorisation processes: apple dehydration, meat preservation and bio-oils production. All these results proved the readiness of NMR for quality controls on a huge kind of organic residues and waste.
6

High order numerical methods for a unified theory of fluid and solid mechanics

Chiocchetti, Simone 10 June 2022 (has links)
This dissertation is a contribution to the development of a unified model of continuum mechanics, describing both fluids and elastic solids as a general continua, with a simple material parameter choice being the distinction between inviscid or viscous fluid, or elastic solids or visco-elasto-plastic media. Additional physical effects such as surface tension, rate-dependent material failure and fatigue can be, and have been, included in the same formalism. The model extends a hyperelastic formulation of solid mechanics in Eulerian coordinates to fluid flows by means of stiff algebraic relaxation source terms. The governing equations are then solved by means of high order ADER Discontinuous Galerkin and Finite Volume schemes on fixed Cartesian meshes and on moving unstructured polygonal meshes with adaptive connectivity, the latter constructed and moved by means of a in- house Fortran library for the generation of high quality Delaunay and Voronoi meshes. Further, the thesis introduces a new family of exponential-type and semi- analytical time-integration methods for the stiff source terms governing friction and pressure relaxation in Baer-Nunziato compressible multiphase flows, as well as for relaxation in the unified model of continuum mechanics, associated with viscosity and plasticity, and heat conduction effects. Theoretical consideration about the model are also given, from the solution of weak hyperbolicity issues affecting some special cases of the governing equations, to the computation of accurate eigenvalue estimates, to the discussion of the geometrical structure of the equations and involution constraints of curl type, then enforced both via a GLM curl cleaning method, and by means of special involution-preserving discrete differential operators, implemented in a semi-implicit framework. Concerning applications to real-world problems, this thesis includes simulation ranging from low-Mach viscous two-phase flow, to shockwaves in compressible viscous flow on unstructured moving grids, to diffuse interface crack formation in solids.

Page generated in 0.076 seconds