1 |
High throughput screening of inhibitors for influenza protein NS1Xia, Shuangluo 08 November 2011 (has links)
Influenza virus A and B are common pathogens that cause respiratory disease in humans. Recently, a highly virulent H5N1 subtype avian influenza virus caused disease outbreaks in poultry around the world. Drug resistant type A viruses rapidly emerged, and the recent H5N1 viruses were reported to be resistant to all current antiviral drugs. There is an urgent need for the development of new antiviral drugs target against both influenza A and B viruses. This dissertation describes work to identify small molecule inhibitors of influenza protein NS1 by a high throughput fluorescence polarization assay. The N-terminal GST fusion of NS1A (residue 1-215) and NS1B (residue 1-145) were chosen to be the NS1A and NS1B targets respectively for HT screening. In developing the assay, the concentrations of fluorophore and protein, and chemical additives were optimized. A total of 17,969 single chemicals from four compound libraries were screened using the optimized assay. Six true hits with dose-response activity were identified. Four of them show an IC₅₀ less than 1 [micromolar]. In addition, one compound, EGCG, has proven to reduce influenza virus replication in a cell based assay, presumably by interacting with the RNA binding domain of NS1. High throughput, computer based, virtual screenings were also performed using four docking programs. In terms of enrichment rate, ICM was the best program for virtual screening inhibitors against NS1-RBD. The compound ZINC0096886 was identified as an inhibitor showing an IC₅₀ around 19 [micromolars] against NS1A, and 13.8 [micromolars] against NS1B. In addition, the crystallographic structures of the NS1A effector domain (wild type, W187A, and W187Y mutants) of influenza A/Udorn/72 virus are presented. A hypothetical model of the intact NS1 dimer is also presented. Unlike the wild type dimer, the W187Y mutant behaved as a monomer in solution, but still was able to binding its target protein, CPSF30, with wild type binding affinity. This mutant may be a better target for the development of new antiviral drugs, as the CPSF30 binding pocket is more accessible to potential inhibitors. The structural information of those proteins would be very helpful for virtual screening and rational lead optimization. / text
|
2 |
Synthesis of AG10 analogs and optimization of TTR ligands for Half-life enhancement (TLHE) of PeptidesJampala, Raghavendra 01 January 2017 (has links)
The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidosis, which is most commonly, caused by aggregation of Immunoglobulin (Ig) light chains or transthyretin (TTR) in the cardiac muscle, represent an important and often underdiagnosed cause of heart failure. TTR-mediated amyloid cardiomyopathies are chronic and progressive conditions that lead to arrhythmias, biventricular heart failure, and death. As no Food and Drug Administration-approved drugs are currently available for treatment of these diseases, the development of therapeutic agents that prevent TTR-mediated cardiotoxicity is desired. AG10 is a potent and selective kinetic stabilizer of TTR. AG10 prevents dissociation of TTR in serum samples obtained from patients with amyloid cardiomyopathy. The oral bioavailability and selectivity of AG10, makes it a very promising candidate to treat TTR amyloid cardiomyopathy. Understanding the reason behind the potency of AG10 would be beneficial for designing stabilizers for other amyloid diseases. This would be possible by designing and synthesizing structural analogues of AG10. Here we report the synthesis, characterization and analysis of AG10 analogs and the comparison of the in vitro activities of the synthesized analogs.
The tremendous therapeutic potential of peptides has not been fulfilled and potential peptide therapies that have failed far outnumber the successes so far. A major challenge impeding the more widespread use of peptides as therapeutics is their poor pharmacokinetic profile, due to short In vivo half-life resulting from inactivation by serum proteases and rapid elimination by kidneys. Extending the In vivo half-life of peptides is clearly desirable in order for their therapeutic potential to be realized, without the need for high doses and/or frequent administration. Covalent conjugation of peptides to macromolecules (e.g. polyethylene glycol or serum proteins such albumin) has been the mainstay approach for enhancing the In vivo half-life of peptides. However, the steric hindrance and immunogenicity of these large macromolecules often compromises the In vivo efficacy of the peptides. Recently, our laboratory established the first successful reversible method of extending the half-life of peptides using serum protein TTR. The approach involved the use of a TTR Ligand for Half-life Extension (TLHE-1) which binds to TTR with high specificity and affinity. We have shown that our technology extends the half-life of multiple peptides without seriously affecting their activity. Our main objective here is to modify the structure of TLHE1 using linkers with different length and composition to optimize its affinity and selectivity for TTR in human serum.
|
Page generated in 0.1591 seconds