• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Experimental Analysis of Auxetic Folded Cores for Sandwich Structures Based on Origami Tessellations

Findley, Tara M. 27 November 2013 (has links)
No description available.
2

Quasi-static impact of foldcore sandwich panels

Gattas, Joseph M. January 2013 (has links)
This thesis considered the design of new and improved foldcore sandwich panels suitable for high-performance energy absorption applications. This was achieved by utilising origami geometry design techniques to alter foldcore structures such that they possessed different mechanical behaviours and failure modes. The major findings of this thesis were in three areas as follows. First, a modified planar foldcore geometry was developed by introducing sub-folds into a standard foldcore pattern. The new geometry, deemed the indented foldcore, successfully triggered a high-order failure mode known as a travelling hinge line failure mode. This was found to have a much higher energy absorption than the plate buckling failure mode seen in an unmodified foldcore structure. A comprehensive numerical, theoretical, and experimental analysis was conducted on the indented core, which included the development of a new foldcore prototyping method that utilised 3D printed moulds. It was shown that compared to available commercial honeycomb cores, the indented foldcore had an improved uniformity of energy absorption, but weaker overall peak and crushing stresses. Second, rigid origami design principles were used to develop extended foldcore geometries. New parametrisations were presented for three patterns, to complete a set of Miura-derivative geometries termed first-level derivatives. The first-level derivative parametrisations were then combined to create complex, piecewise geometries, with compatible faceted sandwich face geometry also developed. Finally, a method to generate rigid-foldable, curved-crease geometry from Miura-derivative straight-crease geometry was presented. All geometry was validated with physical prototypes and was compiled into a MATLAB Toolbox. Third, the performance of these extended foldcore geometries under impact loadings was investigated. An investigation of curved-crease foldcores showed that they were stronger than straight-crease foldcores, and at certain configurations can potentially match the strength, energy-absorption under quasi-static impact loads, and out-of-plane stiffness of a honeycomb core. A brief investigation of foldcores under low-velocity impact loadings showed that curved-crease foldcores, unlike straight-crease foldcores, strengthened under dynamic loadings, however not to the same extent as honeycomb. Finally, an investigation of single-curved foldcore sandwich shells was conducted. It was seen that foldcore shells could not match the energy-absorption capability of an over-expanded honeycomb shell, but certain core types did exhibit other attributes that might be exploitable with future research, including superior initial strength and superior uniformity of response.
3

Ein Beitrag zur mechanischen Charakterisierung und numerischen Simulation von Aramid-Papier für Luftfahrtanwendungen

Bugiel, Alexander 26 March 2021 (has links)
In Luftfahrzeugen werden häufig Sandwich-Strukturen verwendet, da somit vergleichsweise hohe gewichtsspezifische Steifigkeiten und Festigkeiten erreicht werden können. Hierbei werden für Deckschichten überwiegend Faserverbund-Kunststoffe angewendet. Die Kerne bestehen zumeist aus Honigwaben, welche aus phenolharzbeschichtetem Aramid-Papier gefertigt sind. Somit können Anforderungen an die Feuer- und Korrosionsresistenz erfüllt werden. Sandwich-Strukturen im Allgemeinen sind dabei anfällig für lokale Belastungen, sowie Lasten senkrecht zur Struktur. Dies können beispielsweise Schlagbelastungen, Lasteinleitungen durch Verbindungselemente oder Druckunterschiede sein. Folglich bedarf die Zertifizierung von Luftfahrtstrukturen zumeist umfangreiche experimentelle Untersuchungen zum Nachweis des Tragverhaltens und der Schadenstoleranz. Dieses Vorgehen ist äußerst zeitaufwendig und somit kostenintensiv. Virtuelle Tests, welche durch einzelne reale Versuche validiert werden, können den experimentellen Aufwand erheblich reduzieren. Dazu bedarf es fundierter Kenntnisse der mechanischen Eigenschaften der einzelnen Komponenten der Sandwich-Struktur. Während diese für Faserverbund-Kunststoffe als gegeben angenommen werden kann, trifft dies für Honigwabenkerne bestehend aus Aramid-Papier nicht zu. Demzufolge wird in dieser Arbeit ein Vorgehen vorgestellt, welches eine mechanische Charakterisierung und numerische Simulation von papierartigen Materialien ermöglicht. Dabei werden zunächst anwendbare Prüfmethoden für Aramid-Papier evaluiert. Darauf aufbauend werden ein verbessertes Schubprüfverfahren und ein neuartiges Druckprüfverfahren für Papier erarbeitet. Anschließend werden verschiedene luftfahrttaugliche Papiere mechanisch charakterisiert und Anforderungen an ein Materialmodell für die numerische Simulation abgeleitet. Daran anknüpfend wird ein spezielles Materialmodell entwickelt, welches das elastisch-plastische orthotrope Materialverhalten mit unterschiedlicher Druckplastifizierung und regressivem Versagen abbilden kann. Dieses Modell wird in LS-DYNA implementiert und validiert. Darauf aufbauend werden Validierungsrechnungen am Aramid-Papier sowie an Honigwaben- und Faltkern-Strukturen durchgeführt. Abschließende exemplarische Simulationen von Deckschichtablöseversuchen demonstrieren die mit dem Vorgehen erreichbare Qualität der Ergebnisse sowie Möglichkeiten zum virtuellen Testen und virtuelle Parameterstudien. / A variety of components in aircraft are made out of sandwich structures because of its high weight-specific stiffness and strength. In many cases, fiber composite plastics are used for face-layers and cores consist of honeycombs, which are made of phenolic resin coated aramid paper. Thus, requirements for fire and corrosion resistance can be met. Sandwich structures in general are prone to local loads as well as loads perpendicular to the structure. This can be, for example, impact loads, load applications by connecting elements or pressure differences. Consequently, certification of aerospace structures usually requires extensive experimental tests to demonstrate structural behavior and damage tolerance. This procedure is extremely time-consuming and therefore cost-intensive. Virtual tests, which are validated by individual experiments, can significantly reduce the experimental effort. This requires a knowledge of the mechanical properties of the individual components of the sandwich structure. While this is given for fiber composite plastics, this is not true for honeycomb cores consisting of aramid paper. Consequently, this work presents a procedure that allows mechanical characterization and numerical simulation of paper-like materials. First, applicable test methods for aramid paper are evaluated. Based on this, an improved shear test method and a novel compression test method for paper are developed. Subsequently, various paper-like materials are mechanically characterized. The requirements for a material model for numerical simulation are derived. Following on from this, a special material model is developed that can reproduce the elastic-plastic, orthotropic material behavior with different plastification for compressive loads and a regressive failure model. This material model is implemented and validated in LS-DYNA. Based on this, validation calculations are carried out on aramid paper, honeycomb and foldcore structures. Final exemplary simulations of single-cantilever-beam tests demonstrate the achievable quality of the results as well as possibilities for virtual testing and virtual parameter studies.

Page generated in 0.0679 seconds