1 |
Optimization of Hydrothermal Pretreatment and Membrane Filtration Processes of Various Feedstocks to Isolate Hemicelluloses for Biopolymer ApplicationsSukhbaatar, Badamkhand 15 December 2012 (has links)
Hemicelluloses (HC) are the second most abundant plant polysaccharides after cellulose, constituting 25-30% of plant materials. In spite of their abundance, HC are not effectively utilized. Recently, considerable interest has been directed to HC-based biomaterials because of their high oxygen barrier properties, which has potential in food packaging applications. In this study, HC were extracted from sugarcane bagasse and southern yellow pine using a hydrothermal technique which utilizes hot compressed water without catalyst. The parameters affecting the yield of extracted HC such as temperature, time and pressure, were tested and optimized. Eighty four percent of xylose was extracted from sugarcane bagasse at the optimum condition, 180 °C 30 min and 1 MPa pressure. In the case of southern yellow pine, 79% of the mannose was extracted at 190 °C for 10 min and 2 MPa pressure. Concentration and isolation of HC from bagasse and southern yellow pine HC extract were performed by membrane filtration and freeze drying systems. Isolated HC were characterized by FT-IR and 13C NMR techniques and used as a starting material for film preparation. Films were prepared in 0/100, 50/50, 60/40, 70/30 and 80/20% ratios of HC and sodium carboxymethylcellulose (CMC). Thirty five percent of sorbitol (w/w of HC and CMC weight) was also added as a plasticizer. Films were evaluated by measuring water absorption, water vapor permeability (WVP), tensile property and oxygen barrier capability. At 55% relative humidity (RH) and 25 °C the water absorption of both sugarcane bagasse and southern yellow pine HC-based films tended to increase as HC content increased. The lowest WVP of sugarcane bagasse (3.84e-12 g/Pa h m) and southern yellow pine HC films (2.18e-12 g/Pa h m) were determined in 60/40 HC/CMC films. Tensile test results showed that as HC content increases the Young’s modulus decreases, deflection at maximum load and percentage of strain at break increase. It implies that the film properties are changing from stiff to elastic. The oxygen permeability for 60/40 bagasse HC/CMC film was 0.005265 cc μm / (m2 day kPa) and for 70/30 pine HC/CMC film was 0.007570 cc μm /(m2 day kPa).
|
2 |
Mechanism of Foaming on Polymer-Paperboard CompositesAnnapragada, Sriram Kiran 08 November 2007 (has links)
This thesis addresses a new technique of foaming on polymer-paperboard composites which combines the advantages of traditional polymeric foam with the environmental benefits of paperboard. Paperboard is sandwiched between two extruded polymeric layers of different densities. On application of heat, one face is foamed by the evaporating moisture in the board; the other face serves as a barrier. This work is directed at gaining a better understanding of the fundamental processes in foaming polymers on paperboard. The ultimate goal is to be able to produce uniform bubbles of a predetermined size on the surface so as to give optimum heat insulation and good tactile properties. Bubble growth was studied as a function of paperboard properties, polymer melt index, extrusion speed, polymer thickness, temperature and moisture content. The foam quality (thickness) is also related to the cell size distribution and various factors affecting it are identified. A combination of experimental techniques such as high speed imaging, infrared thermography and scanning electron microscopy is used for this purpose. Foaming on paper-polymer composites is caused by water vapor escaping through the pores present in the paperboard substrate and then foaming the polymer. The vapor driving force which dominates foaming and overcomes the less significant viscoelastic and surface tension opposition forces depends on the paperboard properties as well as on the ability of the polymer to bond with the paperboard. It was found that the bubble size distribution directly relates to the pore size distribution on the paperboard. The bubble size was also controlled by the thickness of the polymer layer and its ability to bond with the paperboard. Coalescence subsequently led to thicker foams due to the formation of larger sized bubbles.
|
3 |
Method development and screening of extractable organofluorine (EOF) and targeted PFAS analysis in food packaging materialsLarsson, Nora January 2022 (has links)
Per- and polyfluoroalkyl substances (PFAS) have been manufactured and used in differentapplications for several decades, including food packaging materials. During the last 20 yearsthese compounds have been acknowledged as hazardous for humans and the environment, anddifferent regulations on PFAS have been established on both national and international levels.Companies started to phase-out long-chain PFAS, including both PFOA and PFOS, around 20years ago. Since PFAS are persistent, this cause concerns both for our health and theenvironment, as well as possible PFAS contamination in new products due to the recycling ofmaterials. The aim of this study was to find an effective method to extract PFAS from differentfood packaging materials; analyze the samples for their extractable organofluorine (EOF)content using combustion ion chromatography; as well as analyze targeted PFAS in the samplesusing ultra-high performance liquid chromatography tandem mass spectrometry. The findingsof this study suggest that none of the selected samples had EOF contents above the Danishindicator value of 20 mg/kg dw TOF set to determine whether PFAS has been intentionallyadded to a material, and that only two samples exceeded the limit of detection for EOF. Atakeaway bowl made out of 100% sugarcane contained the highest EOF content while the outerpackaging of a cereal box contained the second highest EOF. Both PFOA and PFOS, alongwith other long-chain PFAS were detected in a majority of the samples. The lowest total PFASconcentrations when analyzing for targeted PFAS was detected in the sugarcane take awaybowl. The highest total PFAS concentration was detected in an egg carton, followed by theouter packaging of a cereal box (same as above) and the outer box of a waffle mix. The targetedPFAS was detected in almost all samples, with PFNA and 6:2 diPAP being the most frequentlydetected PFAS. PFCAs, PFSAs, FTSAs, FOSAAs and PAPs were detected in a majority of thesamples. The highest concentrations were measured for diSAmPAP in a majority of thesamples. Mass balance calculations of the sugarcane bowl showed that the targeted PFAS onlyaccounted for 0.04% of the extractable organofluorine content. In conclusion, none of thesamples displayed EOF contents higher than the Danish indicator value, suggesting that noneof the samples were intentionally treated with PFAS. However, targeted PFAS analysis of thesesamples showed that they still contain PFAS, that could be further recycled along with therecycling of paper and board food packaging materials. Considering the persistence of PFASand that these compounds can remain in the recycling chain, with the risk of also being releasedinto the environment, it is of importance that PFAS is not introduced in any of the stages in apaper or board containers life cycle.
|
Page generated in 0.1114 seconds