• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Konzeptentwicklung für den praktischen Einsatz einer adaptiven akustischen Kamera an Drohnen

Schenderlein, Felix 21 March 2024 (has links)
Ziel der Arbeit ist es ein Konzept zu erstellen, nach dem sich ein bereits entwickeltes abstandsvariables Mikrofonarray in einen Drohnenschwarm integrieren lässt. Herausforderungen diesbezüglich betreffen insbesondere die ungewollt auftretende relative Positionsabweichung einzelner Drohnen im Flug sowie die zeitliche Synchronisation der Messsignale.:Eidesstattliche Erklärung II Danksagung III Inhaltsverzeichnis IV Abbildungsverzeichnis V 1. Einleitung 1 2. Stand der Technik 3 3. Theoretische Grundlagen 5 3.1 Drohnen 5 3.2 Lokalisierungstechnologien 11 4. Bewertung und Auswahl der Komponenten 17 4.1 Entscheidungsmatrizen 18 4.1.1 Lokalisierungstechnik 18 4.1.2 Flight Controller 21 4.1.3 Mikrocontroller 23 4.1.4 Synchronisationstechnologien 24 4.2 Auswahl der Komponenten 27 4.2.3 Lokalisierung 28 4.2.2 Synchronisation und Messstart 33 4.3 Morphologischer Kasten 35 5. Implementierung der Hardware 37 6. Konstruktive Umsetzung 42 7. Zusammenfassung und Ausblick 46 8. Anhang 48 8.1 Abstrahlcharakteristik DMW1001C 48 8.2 Finale Stückliste 49 Literatur L
2

Control of UAVs in Real-World High Precision Scenarios / Steuerung von UAVs mit hoher Präzision in realen Einsatzszenarien

Rothe, Julian January 2024 (has links) (PDF)
This thesis describes the design, implementation and evaluation of a control architecture for Unmanned Aerial Vehicles (UAVs) deployed in scenarios where a very high precision and accuracy in the execution of the respective tasks is required. The developed architecture is easy to adapt to the different requirements of the scenarios and always follows the main principle The right UAV for every mission. This means that it is not sufficient to use existing drones, flight controllers or UAV firmware for the special requirements for high accuracy and precision of the various scenarios. Instead, an adaptable control architecture with multiple levels of abstraction was designed, allowing adjustments at every level to achieve the best possible outcome. This controller architecture consists of three levels: Low-level controller, high-level controller and project-specific controller. The low level controller manages the control tasks with the highest priority directly on the flight controller hardware in real time using the operating system RODOS. The high level controller utilizes the implemented capabilities of the low level controller to coordinate and oversee more complex tasks that might otherwise overload the precious limited resources of the flight controller itself and also provides the interface for the project-specific controllers. As the name states, these controllers can be specifically implemented for the respective projects and their requirements by using the underlying functions of the low and high level controller. In contrast to most other research done in the field of UAV control, the architecture in this work was developed for real-world scenarios and has also been evaluated in these. This thesis describes the steps of the development from simulation through laboratory tests to the real environments. This development is presented in detail using three underlying research projects: MIDRAS presents a drone defense system consisting of physically coupled UAVs that carry a net in a formation flight to capture other drones. Sensorama shows the autonomous landing of a UAV in a special backpack on a bus with only a few centimeters margin of error and QANI presents an UAV that can explore and map its surroundings in 3D completely autonomously. / Diese Arbeit beschreibt das Design, die Implementierung und die Evaluierung einer Reglerarchitektur für Unmanned Aerial Vehicles (UAVs), welche in Szenarien eingesetzt werden, bei denen eine sehr hohe Präzision und Genauigkeit in der Durchführung der jeweiligen Aufgaben benötigt wird. Die entwickelte Architektur ist einfach anpassbar für verschiedene Szenarien und verfolgt immer den Leitsatz: Für jede Mission die passende Drohne. Damit ist gemeint, dass es für die speziellen Anforderungen an die hohe Genauigkeit und Präzision der verschiedenen Szenarien nicht ausreicht, existierende Drohnen, Flightcontroller oder UAV-Firmware zu verwenden. Stattdessen wurde eine anpassungsfähige Reglerarchitektur mit mehreren Abstraktionsebenen entworfen, die es erlaubt an jeder Schraube zu drehen, um das bestmögliche Ergebnis zu erreichen. Diese Reglerarchitetkur besteht aus den 3 Ebenen: Low-Level-Controller, High-Level-Controller und Projektspezifischer-Controller. Der Low-Level-Controller verwaltet die Regelungs-Aufgaben mit der höchsten Priorität direkt auf der Flightcontroller-Hardware in Echtzeit unter Verwendung des Betriebssystems RODOS. Der High-Level-Controller verwendet die implementierten Fähigkeiten des Low-Level-Controllers, um komplexere Aufgaben zu koordinieren und zu überwachen, die andernfalls möglicherweise die kostbaren begrenzten Ressourcen des Flightcontroller selbst überlasten würden. Weiterhin stellt er das Interface für die projektspezifischen-Controller dar. Diese werden, wie der Name bereits sagt, spezifisch für die jeweiligen Projekte und deren Anforderungen implementiert, indem die zugrundeliegenden Funktionen der Low- und High-Level-Regelung verwendet werden. Im Gegensatz zu vielen anderen Forschungsarbeiten auf dem Gebiet der Regelung von UAVs ist die Reglerarchitektur in dieser Arbeit für reale Szenarien entwickelt und auch in diesen evaluiert worden. Diese Thesis beschreibt alle Entwicklungs-Schritte, angefangen von der Simulation über Labor-Tests hin zu den realen Umgebungen. Dabei wird die Entwicklung anhand von 3 Forschungsprojekten detailliert dargestellt: MIDRAS stellt ein Drohnenabwehrsystem vor, welches aus physikalisch gekoppelten UAVs besteht, die im Formationsflug ein Netz tragen, um andere Drohnen einzufangen. Sensorama zeigt die autonome Landung eines UAV in einem speziellen Rucksack an einem Fahrzeug mit nur wenigen Zentimetern Fehlertoleranz und QANI präsentiert ein UAV, welches seine Umgebung vollständig autonom in 3D erkunden und kartografieren kann.

Page generated in 0.0773 seconds