Spelling suggestions: "subject:"fotokatalys"" "subject:"photokatalyse""
1 |
Application of diamond nanomaterials in catalysis / Anwendung von Diamantnanomaterialien in der KatalyseKiendl, Benjamin January 2020 (has links) (PDF)
In this work the catalytic activity of nanodiamond particles with different dopants and surface terminations and of diamond nanomaterials funtionalized with ruthenium-based photocatalysts was investigated, illustrating materials application in photoredox chemistry and the photo(electro)catalytic reduction of CO2. Regarding the application of diamond nanomaterials in photocatalysis, methods to fabricate and characterize several (un)doped nanoparticles with different surface termination were successfully developed. Various photocatalysts, attached to nanodiamond particles via linker systems, were tested in photoredox catalysis and the photo(electro)catalytic reduction of CO2. / In dieser Arbeit wurde die katalytische Aktivität von Nanodiamant-Partikeln mit unterschiedlichen Dotierungen und Oberflächenterminierungen, sowie von Diamant-Nanomaterialien, die mit Photokatalysatoren auf Rutheniumbasis funktionalisiert wurden, untersucht. Die Verwendung der Materialien in Photoredox-Experimenten und in der photo(elektro)katalytischen Reduktion von CO2 konnte verdeutlicht werden. Für die Verwendung von Diamant-Nanomaterialien in der Photokatalyse wurden erfolgreich Methoden zur Herstellung und Charakterisierung zahlreicher (un)dotierter Nanopartikeln mit unterschiedlicher Oberflächenterminierung entwickelt. Verschiedenartige Photokatalysatoren, die mit Hilfe von Linker-Systemen an Nanodiamant-Partikel angebunden wurden, wurden in der Photoredox-Katalyse und der photoelektrokatalytischen Reduktion von CO2 untersucht.
|
2 |
Synthesis, Photophysics and Photocatalysis of [FeFe] Complex Containing Dyads and Bimolecular Systems / Synthese, Photophysik und Photokatalyse von [FeFe]-Komplex enthaltenden Dyaden und bimolekularen SystemenRoos, Markus January 2021 (has links) (PDF)
In the course of this work, a total of three photocatalytically active dyads for proton reduction could be synthesized together with the associated individual components. Two of them, D1 and D2, comprised a [Ru(bpy)3]2+ photosensitizer and D3 an [Ir(ppy)2bpy]+ photosensitizer. A Ppyr3-substituted propyldithiolate [FeFe] complex was used as catalyst in all systems. The absorption spectroscopic and electrochemical investigations showed that an inner-dyadic electronic coupling is effectively prevented in the dyads due to conjugation blockers within the bridging units used. The photocatalytic investigations exhibited that all dyad containing two-component systems (2CS) showed a significantly worse performance than the corresponding bimolecular three-component systems (3CS). Transient absorption spectroscopy showed that the 2CS behave very similarly to the associated multicomponent systems during photocatalysis. The electron that was intended for the intramolecular transfer from the photosensitizer unit to the catalyst unit within the dyads remains at the photosensitizer for a relatively long time, analogous to the 3CS and despite the covalently bound catalyst. It is therefore assumed that this intramolecular electron transfer is likely to be hindered as a result of the weak electronic coupling caused by the bridge units used. Instead, the system bypasses this through an intermolecular transfer to other dyad molecules in the immediate vicinity. In addition, with the help of emission quenching experiments and electrochemical investigations, it could be clearly concluded that all investigated systems proceed via the reductive quenching mechanism during photocatalysis. / Im Rahmen dieser Arbeit konnten insgesamt drei photokatalytisch aktive Dyaden zur Protonenreduktion zusammen mit den zugehörigen Einzelkomponenten synthetisiert werden. Zwei von ihnen, D1 und D2, umfassten einen [Ru(bpy)3]2+-Photosensibilisator und D3 einen [Ir(ppy)2bpy]+-Photosensibilisator. Als Katalysator wurde in allen Systemen ein Ppyr3-substituierter Propyldithiolat-[FeFe]-Komplex verwendet. Die absorptionsspektroskopischen und elektrochemischen Untersuchungen zeigten, dass eine innerdyadische elektronische Kopplung aufgrund von Konjugationsblockern innerhalb der verwendeten Brückeneinheiten wirksam verhindert wird. Die photokatalytischen Untersuchungen zeigten, dass alle dyadenhaltigen Zweikomponentensysteme (2CS) eine signifikant schlechtere Leistung zeigten als die entsprechenden bimolekularen Dreikomponentensysteme (3CS). Mithilfe der transienten Absorptionsspektroskopie konnte gezeigt werden, dass sich die 2CS während der Photokatalyse sehr ähnlich wie die zugehörigen Mehrkomponentensysteme verhalten. Das Elektron, das für den intramolekularen Transfer von der Photosensibilisatoreinheit zur Katalysatoreinheit innerhalb der Dyaden vorgesehen war, verbleibt analog zu den 3CS und trotz des kovalent gebundenen Katalysators relativ lange am Photosensibilisator. Es wird daher angenommen, dass dieser intramolekulare Elektronentransfer wahrscheinlich aufgrund der schwachen elektronischen Kopplung, die durch die verwendeten Brückeneinheiten verursacht wird, behindert wird. Stattdessen umgeht das System dies durch einen intermolekularen Transfer zu anderen Dyadenmolekülen in unmittelbarer Nähe. Darüber hinaus konnte mithilfe von Emissionslöschungsexperimenten und elektrochemischen Untersuchungen eindeutig darauf geschlossen werden, dass alle untersuchten Systeme während der Photokatalyse über den reduktiven Löschmechanismus ablaufen.
|
3 |
Ruthenium Complexes as Water Oxidation Catalysts and Photosensitizers / Rutheniumkomplexe als Wasseroxidationskatalysatoren und PhotosensibilisatorenSchulze, Marcus January 2016 (has links) (PDF)
In der vorliegenden Arbeit werden Aspekte der photokatalytischen Wasseroxidationsreaktion behandelt. Der erste Themenschwerpunkt der Dissertation beschäftigt sich mit einem supramolekularen Makrozyklus, der drei Rutheniummetallzentren enthält. Dieser neuartige Katalysator zeigt eine sehr hohe katalytische Aktivität und gewährt neue Einblicke in den Mechanismus der Wasseroxidationsreaktion. Des Weiteren wird auf die mit Licht interagierenden Komponenten der photokatalytischen Wasseroxidation eingegangen. Hierbei haben sich azabenz-anellierte Perylenderivate als vielseitige Farbstoffklasse herausgestellt. Die Kombination dieser Farbstoffe mit Metallkomplexen liefert metallorganische Verbindungen, die als Photosensibilisatoren eingesetzt werden können. / The thesis discusses aspects of the photocatalytic water oxidation reaction. The first chapter deals with a supramolecular macrocycle which contains three ruthenium metal centers. This novel catalyst shows promising catalytic activity and provides insides into the mechanism of the water oxidation reaction. After this part, the focus lies on the light interacting components of the photocatalytic water oxidation. In this regard, the azabenz-annulated perylene derivatives appeared to be a promising dye class. The combination of these chromophores and metal complexes result in metal organic compounds, which have photosensitizer potential.
|
4 |
Ligand Design for Ru(II) Photosensitizers in Photocatalytic Hydrogen Evolution / Ligandendesign für Ru(II)-Photosensibilisatoren in der photokatalytischen Wasserstoffentwicklung / Conception de ligands pour les photosensibilisateurs de Ru(II) dans l'évolution photocatalytique de l'hydrogèneGamache [geb. Rupp], Mira Theresa January 2021 (has links) (PDF)
This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases.
Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h.
Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. / In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt.
Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert.
Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann. / Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas.
Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h.
L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène.
|
5 |
Synthese, Charakterisierung und Immobilisierung von Kohlenstoffnitriden für die photokatalytische SchadstoffzersetzungKöwitsch, Isabel 26 November 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Synthese von Kohlenstoffnitriden (CN) über verschiedene Syntheserouten und deren Untersuchung bezüglich der photokatalytischen Aktivität zur Wasserreinigung bzw. zum Schadstoffabbau. Je nach Syntheseroute sind heptazinbasierte oder triazinbasierte Kohlenstoffnitride zugänglich. Die Kohlenstoffnitride werden auf ihr photokatalytisches Verhalten untersucht, wobei Produkte welche aus einer Polykondensationsreaktion ausgehend von Dicyandiamid in einem offenen Tiegel unter Luft erhalten werden, besonders hohe photokatalytische Aktivitäten aufweisen. Diese Materialien sind in der Lage verschiedene Schad- und Farbstoffe abzubauen. Die Literatur diskutiert defektreiche, unvollständig kondensierte CN-Materialien als besonders photokatalytisch aktiv. Um Rückschlüsse auf den Kondensationsgrad und die Oberflächenpolarität zu ermöglichen, wurde die Oberflächenpolarität (HBD) der CN-Materialien anhand des Kamlet-Taft-Parameters erstmal über eine Analytikmethode bestimmt. Es wird gezeigt, dass das Vorhandensein polarer Gruppen auf der Katalysatorfläche das Adsorptionsverhalten von Schadstoffen an die Katalysatoroberfläche begünstigt und so photokatalytische Abbaureaktionen positiv beeinflusst werden. CN-Materialien mit einer hohen HBD zeigen deutlich höhere Rhodamin B Umsätze, als Materialien mit einer niedrigen HBD. Photokatalytisch besonders aktive Kohlenstoffnitride wurden ausgewählt, um sie für die Schadstoffzersetzung zur Wasserreinigung als Schichten zu immobilisieren. Somit entfällt der für eine potentielle industrielle Anwendung mitunter aufwendige Abtrennungsschritt des Katalysatormaterials. Dazu kommen drei verschiedene Verfahren zum Einsatz. Zum einen werden magnetische Kohlenstoffnitrid/Eisenoxidkomposite hergestellt und diese über ein Airbrush-Sprühverfahren auf magnetische Substrate aufgebracht. Das Sprühverfahren wird auch genutzt, um Kohlenstoffnitridpartikel auf Silikonsubstrate aufzubringen. Darüber hinaus werden vliesartige Polymersubstrate über das Elektrospinnen erzeugt. Diese werden mit Kohlenstoffnitridpartikeln über ein Tauchverfahren beschichtet. Alle hergestellten Schichten werden auf ihr photokatalytisches Potential zum Schadstoffabbau untersucht. Dabei zeigt sich, dass sowohl Triclosan, als auch Ethinylestradiol und Rhodamin B erfolgreich abgebaut werden können.:Inhaltsverzeichnis
Abkürzungsverzeichnis 3
1 Einleitung und Motivation 6
2 Grundlagen 9
2.1 Methoden zur Abwasserreinigung 9
2.1.1 Abwasserreinigung durch Kläranlagen 9
2.1.2 Einfluss von Medikamentenrückständen auf Mensch und Umwelt 10
2.1.3 Die Einführung der vierten Reinigungsstufe 11
2.2 Grundlagen der Photokatalyse 13
2.2.1 Photokatalytisches Grundprinzip 13
2.2.2 Kinetik und Mechanismen des photokatalytischen Abbaus von Schadstoffen 15
2.2.3 Kohlenstoffnitride als Photokatalysatoren 20
2.2.3.1 Historische Entwicklung und Strukturen von Kohlenstoffnitriden 20
2.2.3.2 Synthesestrategien von Kohlenstoffnitriden 21
2.2.3.3 Anwendung als Photokatalysator 23
2.2.4 Eisenoxide als Photokatalysatoren 25
2.2.4.1 Strukturen und Eigenschaften von Eisenoxiden 25
2.2.4.2 Synthesestrategien von Eisenoxiden 26
2.2.4.3 Anwendung als Photokatalysator 28
2.2.5 Funktionalisierung von Photokatalysatoren 29
2.3 Immobilisierungsmethoden von Photokatalysatoren 30
2.3.1 Überblick über Immobilisierungsmethoden 30
2.3.2 Immobilisierung von Kohlenstoffnitriden 34
2.3.3 Immobilisierung von Eisenoxiden 35
3 Ergebnisse und Diskussion 37
3.1 Synthese und Charakterisierung von Kohlenstoffnitriden 37
3.1.1 CN-Materialien aus der Synthese in evakuierten Quarzglasampullen 37
3.1.2 CN-Materialien aus der Synthese in einer Salzschmelze 44
3.1.3 CN-Materialien aus der Tiegelsynthese 49
3.1.3.1 Untersuchung des Einflusses der Synthesebedingungen auf Struktur und Eigenschaften 49
3.1.3.2 Weitere photokatalytische Untersuchungen mit CN550-T4 56
3.1.3.3 Einfluss der Strahlungsquelle auf den photokatalytischen Abbau mit CN550-T4 62
3.1.4 Vergleich der CN-Materialien erhalten über unterschiedliche Synthesemethoden 66
3.2 Synthese und Charakterisierung von Eisenoxiden 71
3.3 Synthese und Charakterisierung von Eisenoxid/CN-Kompositen 74
3.4 Immobilisierung von Photokatalysatoren 81
3.4.1 Immobilisierung von Eisenoxid/CN-Kompositen auf magnetischen Substraten 81
3.4.1.1 Voruntersuchungen 81
3.4.1.2 Optimierung der Schichten und photokatalytische Untersuchungen 84
3.4.2 Immobilisierung von CN-Materialien auf Polymervliesen 88
3.4.2.1 Darstellung von Polymervliesen über das Elektrospinnen 88
3.4.2.2 Funktionalisierung der Fasern mit CN550-T4-Materialien 92
3.4.2.3 Photokatalytische Untersuchungen der beschichten Vliese 96
3.4.3 Immobilisierung von CN-Materialien auf Silikonsubstraten 98
3.4.4 Vergleich der Immobilisierungsmethoden 106
4 Zusammenfassung und Ausblick 109
5 Experimenteller Teil 113
5.1 Arbeitstechniken und verwendete Geräte 113
5.2 Synthese von Katalysatorpartikeln 119
5.2.1 Synthese von Kohlenstoffnitriden in evakuierten Quarzglasampullen 119
5.2.2 Synthese von Kohlenstoffnitriden in einer Salzschmelze 120
5.2.3 Synthese von Kohlenstoffnitrid im Tiegel 121
5.2.4 Synthese von Eisenoxidpartikeln 122
5.2.5 Darstellung von Eisenoxid/CN-Kompositen 123
5.3 Immobilisierung von Photokatalysatoren 123
5.3.1 Immobilisierung von Eisenoxid/CN-Kompositen auf magnetischen Substraten 123
5.3.2 Sprühen von CN-Schichten auf Silikonsubstraten 124
5.3.3 Immobilisierung von CN-Materialien auf Polymervliesen 125
6 Literaturverzeichnis 127
7 Anhang VIII
8 Curriculum Vitae XII
Selbständigkeitserklärung XIII
|
6 |
Photokatalytische Untersuchungen an Bismutvanadatnanopartikeln aus mikrowellenassistierten Synthesen und an Bismut(III)-oxidschichten aus einem ultraschallgestützten SprühverfahrenHofmann, Max 03 August 2021 (has links)
In der vorliegenden Arbeit werden eine neue mikrowellenassistierte Darstellungsmethode für Bismutvanadatnanopartikel ebenso wie ein ultraschallgestütztes Sprühverfahren zur Abscheidung von Bismut(III)-oxidschichten beschrieben. Nanopartikuläres m-BiVO4 wird durch die Umsetzung von Bi(OtBu)3 mit VO(OtBu)3 unter Zugabe von polymersierbaren Alkoholen, nicht polymerisierbaren Alkoholen sowie ohne Zusätze in einer nichtwässrigen Lösung gefolgt von einer thermischen Oxidation erhalten. Anschließend werden die Nanopartikel hinsichtlich ihrer Eigenschaften verglichen. Ausgehend von einem polynuklearen Bismutoxidocluster wird über ultraschallgestütztes Kaltsprühen, einer sich anschließenden kontrollierten Hydrolyse und einer finalen thermischen Behandlung die Beschichtung verschiedener Substrate mit α-Bi2O3, β-Bi2O3 sowie α/β-Bi2O3 erreicht. Die Charakterisierung der synthetisierten Materialien erfolgt unter anderem mittels Pulverröntgendiffraktometrie, NMR-Spektroskopie, CHN-Analysen, UV/VIS-, IR- und Ramanspektroskopie, thermogravimetrischen Analysen sowie elektronenmikrospische Aufnahmen. Zusätzlich werden die Halbleiterschichten mit einer Wirbelstromsonde vermessen. Die bismuthaltigen Halbleitermaterialien sind im sichtbaren Lichtspektrum anregbar und weisen eine hohe photokatalytische Aktivität beim Abbau von Rhodamin B auf, wobei die zugrunde liegenden Abbaumechanismen UV/VIS-spektroskopisch aufgeklärt werden. Darüber hinaus werden die Photokatalysatoraktivitäten gegenüber wässrigen Lösungen von Methylorange, Orange G, Methylenblau sowie Schadstofflösungen des Biozids Triclosan und des pharmazeutischen Wirkstoffs Ethinylestradiol diskutiert, deren photokatalytische Zersetzung ergänzend mit TOC-Analysen verfolgt wird.:Abkürzungsverzeichnis.....11
1 Einleitung und Motivation.....15
2 Grundlagen der Photokatalyse.....21
2.1 Photokatalyse mit Halbleitern.....21
2.1.1 Definition und Unterteilung von Photokatalysatoren.....21
2.1.2 Funktionsweise, Eigenschaften und weitere Anwendungsfelder von
Halbleiterphotokatalysatoren.....22
2.1.3 Cokatalysatoren in der Photokatalyse.....26
2.1.4 Photokatalysatoren mit Heteroübergang.....28
2.2 Photokatalytischer Abbau von organischen Substanzen.....29
2.2.1 Grundlagen zu Reaktionspfaden und aktiven Spezies.....29
2.2.2 Mechanismen und Kinetik der photokatalytischen Zersetzung am Beispiel von
Rhodamin B.....32
2.3 Bismutvanadat als Photokatalysator.....38
2.4 Bismut(III)-oxid als Photokatalysator.....41
3 Photokatalytische Untersuchungen an Bismutvanadatnanopartikeln aus
mikrowellenassistierten Synthesen.....47
3.1 Synthesemethoden für Metalloxidnanostrukturen und Voruntersuchungen zur
nichtwässrigen Darstellung von nanoskaligem Bismutvanadat.....47
3.2 Darstellung von Bismutvanadatnanopartikeln über die Umsetzung von Bismut(III)-alkoxiden und Vanadium(V)-alkoxiden im Mikrowellenreaktor.....53
3.2.1 Umsetzung von Bismut(III)-alkoxiden und Vanadium(V)-alkoxiden im
Mikrowellenreaktor.....53
3.2.2 Darstellung von Bismutvanadatnanopartikeln durch thermische Oxidation der
Materialien MW-II – MW-V.....57
3.3 Photokatalytische Untersuchungen an monoklinen Bismutvanadatnanopartikeln .....61
3.3.1 Untersuchungen zu den photoinduzierten Abbaumechanismen von Rhodamin B mit Bismutvanadatnanopartikeln.....61
3.3.2 Vergleich der photokatalytischen Aktivität von BiVO4-II – BiVO4-V und
photokatalytische Untersuchungen zum Abbau weiterer Farbstoffe.....65
4 Photokatalytische Untersuchungen an Bismut(III)-oxidschichten aus einem
ultraschallgestützten Sprühverfahren.....72
4.1 Darstellungsmethoden für β-Bismut(III)-oxidschichten.....72
4.2 Darstellung, Modifizierung und photokatalytische Untersuchungen von α- und β-
Bismut(III)-oxidschichten aus einem ultraschallgestützten Sprühverfahren.....76
4.2.1 Darstellung von α- und β-Bismut(III)-oxidschichten über ein ultraschallgestütztes Sprühverfahren ausgehend von [Bi38O45(OMc)24(DMSO)9]·2DMSO·7H2O und deren photokatalytische Untersuchung.....76
4.2.2 Modifizierung der Präparationsmethode und die photokatalytische Zersetzung
von Schadstoffen mit optimierten β-Bismut(III)-oxidschichten.....84
4.2.3 Darstellung von Au/β-Bismut(III)-oxidschichten und deren photokatalytische
Untersuchung.....94
4.3 Darstellung und photokatalytische Untersuchungen von α/β-Bismut(III)-
oxidschichten aus einem ultraschallgestützten Sprühverfahren.....99
4.3.1 Darstellung von α/β-Bismut(III)-oxidschichten über ein ultraschallgestütztes
Sprühverfahren ausgehend von [Bi38O45(OMc)24(DMSO)9]·2DMSO·7H2O.....99
4.3.2 Photokatalytische Untersuchungen an α/β-Bismut(III)-oxidschichten.....104
5 Zusammenfassung und Ausblick.....108
6 Experimenteller Teil.....116
6.1 Eingesetzte Chemikalien und Arbeitstechniken.....116
6.2 Verwendete Gerätetechnik.....116
6.3 Umsetzungen von Alkoxiden und Chloriden des Bismut(III) und Vanadium(V) mit
und ohne Zusatz von Alkoholen.....122
6.3.1 Umsetzung von Bi(OtBu)3 und VO(OtBu)3 in Benzylalkohol unter Rückfluss (RF-I).....122
6.3.2 Umsetzung von BiCl3 und VOCl3 in Benzylalkohol unter Rückfluss (RF-II)..123
6.3.3 Umsetzung von Bi(OtBu)3 und VO(OtBu)3 in Benzylalkohol im Mikrowellenreaktor (MW-I).....123
6.3.4 Umsetzung von Bi(OtBu)3, VO(OtBu)3 und 2-Methoxybenzylalkohol im
Mikrowellenreaktor (MW-II).....123
6.3.5 Umsetzung von Bi(OtBu)3, VO(OtBu)3 und 2,4-Dimethoxybenzylalkohol im
Mikrowellenreaktor (MW-III).....124
6.3.6 Umsetzung von Bi(OtBu)3, VO(OtBu)3 und 2-(Thiophen-2-yl)propan-2-ol im
Mikrowellenreaktor (MW-IV).....124
6.3.7 Umsetzung von Bi(OtBu)3 und VO(OtBu)3 im Mikrowellenreaktor (MW-V)...125
6.4 Darstellung von BiVO4 durch thermische Oxidation der Materialien MW-II –
MW-V.....125
6.5 Darstellung der Bismut(III)-oxidschichten über ein ultraschallgestütztes
Sprühverfahren.....126
6.5.1 β-Bi2O3-Schichten ausgehend von [Bi38O45(OMc)24(DMSO)9]·2DMSO·7H2O.....126
6.5.2 α-Bi2O3-Schichten ausgehend von [Bi38O45(OMc)24(DMSO)9]·2DMSO·7H2O.....127
6.5.3 Au/β-Bi2O3-Schichten ausgehend von β-Bi2O3-Schichten mittels Photodeposition.....127
6.5.4 α/β-Bi2O3-Schichten ausgehend von [Bi38O45(OMc)24(DMSO)9]·2DMSO·7H2O.....128
6.6 Photokatalytische Untersuchungen.....128
7 Literaturverzeichnis.....131
8 Anhang.....159
Curriculum Vitae.....177
Publikationsverzeichnis.....178
Tagungsbeiträge.....179
Selbstständigkeitserklärung.....181
|
Page generated in 0.0675 seconds