• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Constructions of Certain Fractal Mixtures

Liang, Haodong 27 April 2009 (has links)
The purpose of this paper is to construct sets, measures and energy forms of certain mixed nested fractals which are spatially homogeneous but not strictly self-similar. We start with the constructions of regular nested fractals, such as Sierpinski gaskets and Koch curves, by employing the iterated map system. Then we show that under the open set condition, the unique invariant (self-similar) measure consists with the normalized Hausdorff measure ristricted on the invariant set. The energy forms construced on regular Sierpinski gaskets and Koch curves is also proved to be a closed form. Next, we use the similar idea, by extending the iterated maps system into a general case, to construct the mixture sets, as well as measures and energy forms. It can be seen that the elements so constructed will not have any strict self-similarity, but them indeed satisfy some weak self-similar properties.

Page generated in 0.0571 seconds