Spelling suggestions: "subject:"fractal.""
111 |
Antenas impressas compactas para sistemas WIMAX. / Small patch antennas for WIMAX systems.Moraes, Leonardo Bastos 13 September 2012 (has links)
Alcançar altas taxas de dados em comunicações sem fio é difícil. Altas taxas de dados para redes locais sem fio tornou-se comercialmente um sucesso por volta do ano de 2000. Redes de longa distância sem fio ainda são projetados e utilizados principalmente para serviços de voz em baixas taxas. Apesar de muitas tecnologias promissoras, a realidade de uma rede de área ampla que atenda muitos usuários com altas taxas de dados e largura de banda e consumo de energia razoáveis, além de uma boa cobertura e qualidade no serviço ainda é um desafio. O objetivo do IEEE 802.16 é projetar um sistema de comunicação sem fio para obter uma internet de banda larga para usuários móveis em uma área metropolitana. É importante perceber que o sistema WIMAX tem que enfrentar desafios semelhantes aos existentes sistemas celulares e seu desempenho eventual será delimitado pelas mesmas leis da física e da teoria da informação. Em muitas áreas da engenharia elétrica, tem-se direcionado atenção à miniaturização de componentes e equipamentos. Em particular, antenas não são exceções. Desde que Wheeler iniciou estudos sobre os limites fundamentais de miniaturização de antenas, o assunto tem sido discutido por muitos estudiosos e várias contribuições nesse sentido foram feitas desde então. Os avanços das últimas décadas na área de microeletrônica permitiram a miniaturização dos demais componentes empregados no desenvolvimento de equipamentos eletrônicos e disponibilizaram o uso de aparelhos compactos, leves e com diversas funcionalidades e aplicações comerciais. No entanto, ainda que a integração de circuitos seja uma realidade, a integração completa de um sistema de comunicação sem fio, incluindo a antena, é ainda um dos grandes desafios tecnológicos. No caso de antenas impressas procura-se continuamente desenvolver antenas que, além de compactas, apresentem maior largura de banda, ou operação em múltiplas bandas dada sua inerente característica de banda estreita em projetos convencionais. Neste trabalho, o foco está na miniaturização de antenas impressas através da aplicação de fractais. São apresentadas comparações entre antenas fractais quadradas de Minkowski e fractais triangulares de Koch. Inicialmente, antenas 6 impressas com geometrias convencionais quadradas e triangulares foram projetadas para ter a mesma frequência de ressonância. Depois disso, as estruturas fractais de Minkowski Island e Koch Loop foram implementadas nas antenas quadrada e triangular, respectivamente, até a terceira iteração. As frequências escolhidas foram as de 2,4 GHz, 3,5 GHz, 5,0 GHz e 5,8 GHz. Diversos protótipos foram construídos em dois substratos de permissividade diferentes, o FR-4 e o DUROID 5870. Para validar os resultados foram construídas antenas na frequência de 3,5 GHz para as geometrias quadrada e triangular e suas iterações fractais. A contribuição deste trabalho está na análise sobre as vantagens e desvantagens de cada uma das estruturas propostas. Dependendo dos requisitos de um projeto, a opção pode ser por antenas miniaturizadas com maior largura de banda, como normalmente acontece em alguns projetos comerciais. Entretanto, o interesse por bandas estreitas muitas vezes pode ser um requisito, principalmente para emprego militar, onde por vezes a máxima discrição na transmissão é uma exigência. Além disso, também foi feita uma análise sobre as geometrias que atingiram maior miniaturização. / Achieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
|
112 |
Antenas impressas compactas para sistemas WIMAX. / Small patch antennas for WIMAX systems.Leonardo Bastos Moraes 13 September 2012 (has links)
Alcançar altas taxas de dados em comunicações sem fio é difícil. Altas taxas de dados para redes locais sem fio tornou-se comercialmente um sucesso por volta do ano de 2000. Redes de longa distância sem fio ainda são projetados e utilizados principalmente para serviços de voz em baixas taxas. Apesar de muitas tecnologias promissoras, a realidade de uma rede de área ampla que atenda muitos usuários com altas taxas de dados e largura de banda e consumo de energia razoáveis, além de uma boa cobertura e qualidade no serviço ainda é um desafio. O objetivo do IEEE 802.16 é projetar um sistema de comunicação sem fio para obter uma internet de banda larga para usuários móveis em uma área metropolitana. É importante perceber que o sistema WIMAX tem que enfrentar desafios semelhantes aos existentes sistemas celulares e seu desempenho eventual será delimitado pelas mesmas leis da física e da teoria da informação. Em muitas áreas da engenharia elétrica, tem-se direcionado atenção à miniaturização de componentes e equipamentos. Em particular, antenas não são exceções. Desde que Wheeler iniciou estudos sobre os limites fundamentais de miniaturização de antenas, o assunto tem sido discutido por muitos estudiosos e várias contribuições nesse sentido foram feitas desde então. Os avanços das últimas décadas na área de microeletrônica permitiram a miniaturização dos demais componentes empregados no desenvolvimento de equipamentos eletrônicos e disponibilizaram o uso de aparelhos compactos, leves e com diversas funcionalidades e aplicações comerciais. No entanto, ainda que a integração de circuitos seja uma realidade, a integração completa de um sistema de comunicação sem fio, incluindo a antena, é ainda um dos grandes desafios tecnológicos. No caso de antenas impressas procura-se continuamente desenvolver antenas que, além de compactas, apresentem maior largura de banda, ou operação em múltiplas bandas dada sua inerente característica de banda estreita em projetos convencionais. Neste trabalho, o foco está na miniaturização de antenas impressas através da aplicação de fractais. São apresentadas comparações entre antenas fractais quadradas de Minkowski e fractais triangulares de Koch. Inicialmente, antenas 6 impressas com geometrias convencionais quadradas e triangulares foram projetadas para ter a mesma frequência de ressonância. Depois disso, as estruturas fractais de Minkowski Island e Koch Loop foram implementadas nas antenas quadrada e triangular, respectivamente, até a terceira iteração. As frequências escolhidas foram as de 2,4 GHz, 3,5 GHz, 5,0 GHz e 5,8 GHz. Diversos protótipos foram construídos em dois substratos de permissividade diferentes, o FR-4 e o DUROID 5870. Para validar os resultados foram construídas antenas na frequência de 3,5 GHz para as geometrias quadrada e triangular e suas iterações fractais. A contribuição deste trabalho está na análise sobre as vantagens e desvantagens de cada uma das estruturas propostas. Dependendo dos requisitos de um projeto, a opção pode ser por antenas miniaturizadas com maior largura de banda, como normalmente acontece em alguns projetos comerciais. Entretanto, o interesse por bandas estreitas muitas vezes pode ser um requisito, principalmente para emprego militar, onde por vezes a máxima discrição na transmissão é uma exigência. Além disso, também foi feita uma análise sobre as geometrias que atingiram maior miniaturização. / Achieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
|
113 |
Reappraisal of market efficiency tests arising from nonlinear dependence, fractals, and dynamical systems theoryCha, Gun-Ho January 1993 (has links)
The efficient market hypothesis (EMH) has long been perceived as the cornerstone of modern finance theory. However, the EMH has also recently been dismissed as "the most remarkable error in the history of economic theory" (Wall Street Journal, Oct. 23. 1987). Most of the early research was concerned with detecting the efficiencies or inefficiencies by autocorrelation tests, run tests, and filtering tests. In general, the inefficiencies detected are relatively small. Recently, however, there has been an explosion of research activity to detect inefficiencies in the general area which we call "nonlinear science". This dissertation aims at the applications of these kinds of new methodologies to the Swedish stock market and the Korean stock market. This dissertation consists of 8 chapters. Chapter 1 reviews the challenges to stock market efficiency, and chapter 2 criticizes traditional financial models and assumptions for the EMH tests. Chapter 3 discusses the sample data. In chapter 4, the estimated results under the product process model are presented. Chapter 5 is focused on the low power spectrum law. The power exponent is calculated for the samples. In chapter 6, the types of patterns (memory) are uncovered by Rescaled range (R/S) analysis. Chapter 7 deals with the market inefficiency arising from nonlinear dynamical systems theory. The BDS test for detecting nonlinear dependence is applied to the sample markets. Finally, chapter 8 summarizes the conclusions. / Diss. Stockholm : Handelshögsk.
|
114 |
Numerical Values of the Hausdorff and Packing Measures for Limit Sets of Iterated Function SystemsReid, James Edward 08 1900 (has links)
In the context of fractal geometry, the natural extension of volume in Euclidean space is given by Hausdorff and packing measures. These measures arise naturally in the context of iterated function systems (IFS). For example, if the IFS is finite and conformal, then the Hausdorff and packing dimensions of the limit sets agree and the corresponding Hausdorff and packing measures are positive and finite. Moreover, the map which takes the IFS to its dimension is continuous. Developing on previous work, we show that the map which takes a finite conformal IFS to the numerical value of its packing measure is continuous. In the context of self-similar sets, we introduce the super separation condition. We then combine this condition with known density theorems to get a better handle on finding balls of maximum density. This allows us to extend the work of others and give exact formulas for the numerical value of packing measure for classes of Cantor sets, Sierpinski N-gons, and Sierpinski simplexes.
|
115 |
A Study of Smooth Functions and Differential Equations on FractalsPelander, Anders January 2007 (has links)
<p>In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers.</p><p>Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f.</p><p>In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions.</p><p>In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.</p>
|
116 |
A Study of Smooth Functions and Differential Equations on FractalsPelander, Anders January 2007 (has links)
In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers. Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f. In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions. In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.
|
117 |
The fractal geometry of Brownian motionPotgieter, Paul 11 1900 (has links)
After an introduction to Brownian motion, Hausdorff dimension, nonstandard analysis and Loeb measure theory, we explore the notion of a nonstandard formulation of Hausdorff dimension. By considering an adapted form of the counting measure formulation of Lebesgue measure, we find that Hausdorff dimension can be computed through a counting argument rather than the traditional way. This formulation is then applied to obtain simple proofs of some of the dimensional properties of Brownian motion, such as the doubling of the dimension of a set of dimension smaller than 1/2 under Brownian motion, by utilising Anderson's formulation of Brownian motion as a hyperfinite random walk. We also use the technique to refine a theorem of Orey and Taylor's on the Hausdorff dimension of the rapid points of Brownian motion. The result is somewhat stronger than the original. Lastly, we give a corrected proof of Kaufman's result that the rapid points of Brownian motion have similar Hausdorff and Fourier dimensions, implying that they constitute a Salem set. / Mathematical Sciences / D. Phil. (Mathematical Sciences)
|
118 |
Dimensions and projectionsNilsson, Anders January 2006 (has links)
This thesis concerns dimensions and projections of sets that could be described as fractals. The background is applied problems regarding analysis of human tissue. One way to characterize such complicated structures is to estimate the dimension. The existence of different types of dimensions makes it important to know about their properties and relations to each other. Furthermore, since medical images often are constructed by x-ray, it is natural to study projections. This thesis consists of an introduction and a summary, followed by three papers. Paper I, Anders Nilsson, Dimensions and Projections: An Overview and Relevant Examples, 2006. Manuscript. Paper II, Anders Nilsson and Peter Wingren, Homogeneity and Non-coincidence of Hausdorff- and Box Dimensions for Subsets of ℝn, 2006. Submitted. Paper III, Anders Nilsson and Fredrik Georgsson, Projective Properties of Fractal Sets, 2006. To be published in Chaos, Solitons and Fractals. The first paper is an overview of dimensions and projections, together with illustrative examples constructed by the author. Some of the most frequently used types of dimensions are defined, i.e. Hausdorff dimension, lower and upper box dimension, and packing dimension. Some of their properties are shown, and how they are related to each other. Furthermore, theoretical results concerning projections are presented, as well as a computer experiment involving projections and estimations of box dimension. The second paper concerns sets for which different types of dimensions give different values. Given three arbitrary and different numbers in (0,n), a compact set in ℝn is constructed with these numbers as its Hausdorff dimension, lower box dimension and upper box dimension. Most important in this construction, is that the resulted set is homogeneous in the sense that these dimension properties also hold for every non-empty and relatively open subset. The third paper is about sets in space and their projections onto planes. Connections between the dimensions of the orthogonal projections and the dimension of the original set are discussed, as well as the connection between orthogonal projection and the type of projection corresponding to realistic x-ray. It is shown that the estimated box dimension of the orthogonal projected set and the realistic projected set can, for all practical purposes, be considered equal.
|
119 |
Fractals and Billiard Orbits on Sierpinski CarpetsLandstedt, Erik January 2017 (has links)
This Bachelor's thesis deals with fractals and orbits on Sierpinski carpets. We present the fundamental theory regarding fractals and some illustrative examples together with fractal billiards. In the latter part of the thesis we use elementary methods to present an original proof concerning the closure of some billiard orbits on Sierpinski carpets. A survey of the article Periodic Billiard orbits of self-similar Sierpinski Carpets, see [8], has been done, in which we make a discussion about one open question regarding reflections on the carpet. Furthermore, we state and prove some propositions related to this open question.
|
120 |
An exploration of fractal dimensionCohen, Dolav January 1900 (has links)
Master of Science / Department of Mathematics / Hrant Hakobyan / When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 30 years, this small branch of mathematics has developed extensively. Fractals can be de fined as those sets which have non-integral Hausdor ff dimension. In this thesis, we take a look at some basic measure theory needed to introduce certain de finitions of fractal dimensions, which can be used to measure a set's fractal degree. We introduce Minkowski dimension and Hausdor ff dimension as well as explore some examples where they coincide. Then we look at the dimension of a measure and some very useful applications. We conclude with a well known result of Bedford and McMullen about the Hausdor ff dimension of self-a ffine sets.
|
Page generated in 0.0531 seconds