• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 24
  • 21
  • 15
  • 14
  • 14
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A Study On Solutions Of Singular Integral Equations

George, A J 07 1900 (has links) (PDF)
No description available.
52

Lerchova věta v teorii časových škál a její důsledky pro zlomkový kalkulus / Lerch's theorem in the time-scales theory and its consequences for fractional calculus

Dolník, Matej January 2017 (has links)
Hlavním zájmem diplomové práce je studium zobecněné nabla Laplaceové transformace na časových škálach a její jednoznačnosti, včetně důkazu jednoznačnosti a aplikace jednoznačnosti v zlomkovém kalkulu na časových škálach.
53

PokroÄil© metody parametrizace online p­sma osob s grafomotorickmi obt­emi / Advanced Parameterisation of Online Handwriting in Writers with Graphomotor Disabilities

Mucha, Jn January 2021 (has links)
Grafomotorick© obt­e (GD) vraznÄ ovlivuj­ kvalitu ivota koln­m vÄkem poÄ­naj­c, kde se vyv­jej­ grafomotorick© schopnosti, a do dchodov©ho vÄku. VÄasn diagnza tÄchto obt­­ a terapeutick zsah maj­ velk vznam k jejich zlepen­. Vzhledem k tomu, e GD souvis­ z v­cermi symptomy v oblasti kinematiky, zkladn­ kinematick© parametry jako rychlost, zrychlen­ a vih prokzaly efektivn­ kvantizaci tÄchto symptom. Objektivn­ vpoÄetn­ syst©m podpory rozhodovn­ pro identifikaci a vyeten­ GD vak nen­ dostupn. A proto je hlavn­m c­lem m© disertaÄn­ prce vzkum pokroÄil© metody parametrizace online p­sma pro analzu GD se speciln­m zamÄen­m na vyuit­ metod zlomkov©ho kalkulu. Tato prce je prvn­, kter experimentuje s vyuit­m derivac­ neceloÄ­seln©ho du (FD) pro analzu GD pomoc­ online p­sma z­skan©ho od pacient s Parkinsonovou nemoc­ a u dÄt­ koln­ho vÄku. Byla navrena a evaluovna nov metoda parametrizace online p­sma zaloena na FD vyuit­m Grnwald-Letnikova p­stupu. Bylo dokzno, e navren metoda vznamnÄ zlepuje diskriminaÄn­ s­lu a deskriptivn­ schopnosti v oblasti Parkinsonick© dysgrafie. StejnÄ tak metoda pozitivnÄ ovlivnila i nejmodernÄj­ techniky v oblasti analzy GD u dÄt­ koln­ho vÄku. Vyvinut parametrizace byla optimalizovna s ohledem na vpoÄetn­ nroÄnost (a o 80 %) a tak© na vyladÄn­ du FD. Ke konci prce byly porovnny v­cer© p­stupy vpoÄtu FD, jmenovitÄ Riemann-Liouvillv, Caputv spoleÄnÄ z Grnwald-Letnikovm p­stupem za Äelem identifikace tÄch nejvhodnÄj­ch pro jednotliv© oblasti analzy GD.
54

Zlomkové diferenciální rovnice a jejich aplikace / Fractional differential equations and their applications

Kisela, Tomáš January 2008 (has links)
Zlomkový kalkulus je matematická disciplína zabývající se vlastnostmi derivací a integrálů neceločíselných řádů (nazývaných zlomkové derivace a integrály, zkráceně diferintegrály) a metodami řešení diferenciálních rovnic obsahujících zlomkové derivace neznámé funkce (tzv. zlomkovými diferenciálními rovnicemi). V této práci představujeme standardní přístupy k definicím zlomkového kalkulu a důkazy některých základních vlastností diferintegrálů. Dále uvádíme krátký přehled metod řešení některých lineárních zlomkových diferenciálních rovnic a vymezujeme hranice jejich použitelnosti. Na závěr si všímáme některých fyzikálních aplikací zlomkového kalkulu.
55

Kvalitativní a numerická analýza zlomkových diferenciálních rovnic / Qualitative and numerical analysis of fractional differential equations

Zemčíková, Michaela January 2013 (has links)
This master's thesis deals with fractional differential equations. One of the aims of this thesis is to mention summary of basic types of fractional differential equations. It is very difficult to find their exact solution, hence we will analyze the main qualitative properties of solution, which are stability and asymptotics. Part of the text will be devoted to fractional difference equations, i.e. discussion of numerical solution. At the end of thesis the Bagley-Torvik model will be described with respect to qualitative properties and numerical solution.
56

Fractional calculus operator and its applications to certain classes of analytic functions. A study on fractional derivative operator in analytic and multivalent functions.

Amsheri, Somia M.A. January 2013 (has links)
The main object of this thesis is to obtain numerous applications of fractional derivative operator concerning analytic and -valent (or multivalent) functions in the open unit disk by introducing new classes and deriving new properties. Our finding will provide interesting new results and indicate extensions of a number of known results. In this thesis we investigate a wide class of problems. First, by making use of certain fractional derivative operator, we define various new classes of -valent functions with negative coefficients in the open unit disk such as classes of -valent starlike functions involving results of (Owa, 1985a), classes of -valent starlike and convex functions involving the Hadamard product (or convolution) and classes of -uniformly -valent starlike and convex functions, in obtaining, coefficient estimates, distortion properties, extreme points, closure theorems, modified Hadmard products and inclusion properties. Also, we obtain radii of convexity, starlikeness and close-to-convexity for functions belonging to those classes. Moreover, we derive several new sufficient conditions for starlikeness and convexity of the fractional derivative operator by using certain results of (Owa, 1985a), convolution, Jack¿s lemma and Nunokakawa¿ Lemma. In addition, we obtain coefficient bounds for the functional of functions belonging to certain classes of -valent functions of complex order which generalized the concepts of starlike, Bazilevi¿ and non-Bazilevi¿ functions. We use the method of differential subordination and superordination for analytic functions in the open unit disk in order to derive various new subordination, superordination and sandwich results involving the fractional derivative operator. Finally, we obtain some new strong differential subordination, superordination, sandwich results for -valent functions associated with the fractional derivative operator by investigating appropriate classes of admissible functions. First order linear strong differential subordination properties are studied. Further results including strong differential subordination and superordination based on the fact that the coefficients of the functions associated with the fractional derivative operator are not constants but complex-valued functions are also studied.
57

Towards Structural Health Monitoring of Gossamer Structures Using Conductive Polymer Nanocomposite Sensors

Sunny, Mohammed Rabius 14 September 2010 (has links)
The aim of this research is to calibrate conductive polymer nanocomposite materials for large strain sensing and develop a structural health monitoring algorithm for gossamer structures by using nanocomposites as strain sensors. Any health monitoring system works on the principle of sensing the response (strain, acceleration etc.) of the structure to an external excitation and analyzing the response to find out the location and the extent of the damage in the structure. A sensor network, a mathematical model of the structure, and a damage detection algorithm are necessary components of a structural health monitoring system. In normal operating conditions, a gossamer structure can experience normal strain as high as 50%. But presently available sensors can measure strain up to 10% only, as traditional strain sensor materials do not show low elastic modulus and high electrical conductivity simultaneously. Conductive polymer nanocomposite which can be stretched like rubber (up to 200%) and has high electrical conductivity (sheet resistance 100 Ohm/sq.) can be a possible large strain sensor material. But these materials show hysteresis and relaxation in the variation of electrical properties with mechanical strain. It makes the calibration of these materials difficult. We have carried out experiments on conductive polymer nanocomposite sensors to study the variation of electrical resistance with time dependent strain. Two mathematical models, based on the modified fractional calculus and the Preisach approaches, have been developed to model the variation of electrical resistance with strain in a conductive polymer. After that, a compensator based on a modified Preisach model has been developed. The compensator removes the effect of hysteresis and relaxation from the output (electrical resistance) obtained from the conductive polymer nanocomposite sensor. This helps in calibrating the material for its use in large strain sensing. Efficiency of both the mathematical models and the compensator has been shown by comparison of their results with the experimental data. A prestressed square membrane has been considered as an example structure for structural health monitoring. Finite element analysis using ABAQUS has been carried out to determine the response of the membrane to an uniform transverse dynamic pressure for different damage conditions. A neuro-fuzzy system has been designed to solve the inverse problem of detecting damages in the structure from the strain history sensed at different points of the structure by a sensor that may have a significant hysteresis. Damage feature index vector determined by wavelet analysis of the strain history at different points of the structure are taken by the neuro-fuzzy system as input. The neuro-fuzzy system detects the location and extent of the damage from the damage feature index vector by using some fuzzy rules. Rules associated with the fuzzy system are determined by a neural network training algorithm using a training dataset, containing a set of known input and output (damage feature index vectors, location and extent of damage for different damage conditions). This model is validated by using the sets of input-output other than those which were used to train the neural network. / Ph. D.
58

Applications of Visibility Graphs for the representation of Time Series

Mira Iglesias, Ainara 04 November 2021 (has links)
[EN] In this thesis, we consider two problems: we first explore the application of visibility graphs for describing the orbits of a discrete dynamical system that is governed by a fractional version of the logistic equation. We also study how to use this type of graphs to study response time series from the perspective of psychology. The preliminaries and introduction of these visibility graphs are presented in Chapter 1, where we revisit some basic facts from network science related to them. In the first part of this thesis, we analyze a phenomenon of mathematical nature. Wu and Baleanu introduced a fractional discrete dynamical system inspired by the fractional difference logistic equation. In order to study the trajectories of this model under this perspective of network science, in Chapter 2, we first review the most used fractional derivatives (Riemann-Liouville, Caputo, and Gründwald-Letnikov). Later, we show how to consider discrete fractional derivatives. Within our work, we present an alternative way of deducing the governing equation with respect to the one shown by Wu and Baleanu. We revisit the Wu-Baleanu equation in Chapter 3, focused on the visibility graphs of trajectories generated under different values of the scaling factor and the fractional exponent. We also study the existing connections between these parameters and the fitting with the degree distribution of the corresponding visibility graphs. When chaos is present, we link them with the exponent obtained when fitting the degree distribution to a power-law of the form x^(¿¿). With this approach, we provide an integrated vision of the dynamics of a family of fractional discrete dynamical systems that cannot be obtained from single Feigenbaum diagrams computed for each scaling factor and fractional exponent. We also connect the power-law exponent of the degree distribution fitting with the Shannon entropy of the visibility graphs degree distribution. In the second part, we analyze the response times of students to a binary decision task from the perspective of network science. We analyze the properties of the natural visibility graphs associated with their reaction time series. We observe that the degree distribution of these graphs usually fits a power-law distribution p(x) = x^(¿¿). We study the range in which parameter ¿ occurs and the changes of this exponent with respect to the age and gender of the students. Besides, we also study the links between the parameter ¿ and the ex-Gaussian distribution parameters that best fits each subject's response times. Finally, we outline some conclusions and perspectives of future research in both parts in Chapter 6. / [ES] En esta tesis, hemos considerado dos problemas: primero exploramos la aplicación de los grafos de visibilidad para describir las órbitas de un sistema dinámico discreto que está gobernado por una versión fraccionaria de la ecuación logística. Además, también estudiamos cómo usar este tipo de grafos para estudiar series temporales de tiempos de respuesta desde una perspectiva psicológica. Los preliminares, así como una introducción a estos grafos de visibilidad, se presentan en el Capítulo 1, donde revisitamos algunos hechos básicos de la ciencia de redes relacionados con dichos grafos. En la primera parte de esta tesis, analizamos un fenómeno de naturaleza matemática. Wu y Baleanu introdujeron un sistema dinámico discreto fraccionario inspirado en la ecuación logística con derivadas fraccionarias. Con el propósito de estudiar las trayectorias de este modelo desde la perspectiva de la ciencia de redes, en el Capítulo 2, primero revisamos las derivadas fraccionarias más utilizadas (Riemann-Liouville, Caputo y Gründwald-Letnikov). Posteriormente, mostramos cómo considerar derivadas fraccionarias discretas. En nuestro trabajo, presentamos una forma alternativa de deducir la ecuación gobernante con respecto a la presentada por Wu y Baleanu. Revisitamos la ecuación de Wu-Baleanu en el Capítulo 3, centrado en los grafos de visibilidad de trayectorias generadas a partir de distintos valores del factor de escala y del exponente fraccionario. También estudiamos la existencia de conexiones entre estos parámetros y el ajuste de la distribución de los grados de los correspondientes grafos de visibilidad. Cuando el caos está presente, los enlazamos con el exponente obtenido al ajustar la distribución de los grados a una ley de potencias de la forma x^(¿¿). A través de este enfoque, proporcionamos una visión integrada de la dinámica de una familia de sistemas dinámicos discretos fraccionarios que no se pueden obtener a partir de diagramas de Feigenbaum individuales calculados para cada factor de escala y exponente fraccionario. Además, relacionamos el exponente de la ley de potencias del ajuste de la distribución de grados con la entropía de Shannon de la distribución de grados de los grafos de visibilidad. En la segunda parte, analizamos el tiempo de respuesta de un grupo de estudiantes que realizaron una tarea de decisión binaria desde la perspectiva de la ciencia de redes. Estudiamos las propiedades de los grafos de visibilidad natural asociados con sus correspondientes series de tiempos de respuesta. Observamos que la distribución de los grados de estos grafos normalmente sigue una distribución ley de potencias p(x) = x^(¿¿). Analizamos el rango en el cual el parámetro ¿ se mueve y los cambios de este exponente con respecto a la edad y el sexo de los estudiantes. Por otro lado, también estudiamos la relación entre el parámetro ¿ y los parámetros de la distribución ex-Gaussiana que mejor se ajusta al tiempo de respuesta de cada sujeto. Finalmente, destacamos algunas conclusiones y perspectivas de investigación futura en ambas líneas de trabajo en el Capítulo 6. / [CAT] En aquesta tesi, hem considerat dos problemes: primer explorem l'aplicació dels grafs de visibilitat per a descriure les òrbites d'un sistema dinàmic discret que està governat per una versió fraccionària de l'equació logística. A més a més, també estudiem com emprar aquest tipus de grafs per a analitzar sèries temporals de temps de resposta des d'una perspectiva psicològica. Els preliminars, així com una introducció a aquests grafs de visibilitat, es presenten al Capítol 1, on revisitem alguns fets bàsics de la ciència de xarxes relacionats amb ells. En la primera part d'aquesta tesi, analitzem un fenomen de naturalesa matemàtica. Wu i Baleanu van introduir un sistema dinàmic discret fraccionari inspirat en l'equació logística amb derivades fraccionàries. Amb el fi d'estudiar les trajectòries d'aquest model des d'una perspectiva de la ciència de xarxes, en el Capítol 2, primer revisem les derivades fraccionàries més utilitzades (Riemann-Liouville, Caputo i Gründwald-Letnikov). Posteriorment, mostrem com considerar derivades fraccionàries discretes. Al nostre treball, presentem una forma alternativa de deduir l'equació governant respecte a la presentada per Wu i Baleanu. Revisitem l'equació de Wu-Baleanu al Capítol 3, focalitzat en els grafs de visibilitat de trajectòries generades a partir de valors diferents del factor d'escala i de l'exponent fraccionari. També estudiem l'existència de connexions entre aquests paràmetres i l'ajust de la distribució dels graus dels corresponents grafs de visibilitat. Quan el caos hi és, els enllacem amb l'exponent que hem obtés en ajustar la distribució dels graus a una llei de potències de la forma x^(¿¿). Des d'aquesta perspectiva, proporcionem una visió integrada de la dinàmica d'una família de sistemes dinàmics discrets fraccionaris que no es poden obtenir a partir de diagrames de Feigenbaum individuals calculats per a cada factor d'escala i exponent fraccionari. A més a més, relacionem l'exponent de la llei de potències de l'ajust de la distribució de graus amb l'entropia de Shannon de la distribució de graus dels grafs de visibilitat. A la segona part, analitzem el temps de resposta d'un grup d'estudiants que realitzaren una tasca de decisió binària des del punt de vista de la ciència de xarxes. Estudiem les propietats dels grafs de visibilitat natural associats amb les seues corresponents sèries temporals de temps de resposta. Observem que la distribució dels graus d'aquests grafs normalment segueix una distribució llei de potències p(x) = x^(¿¿). Analitzem el rang en què el paràmetre ¿ es mou i els canvis d'aquest exponent respecte a l'edat i el sexe dels estudiants. D'altra banda, també estudiem la relació entre el paràmetre ¿ i els paràmetres de la distribució ex-Gaussiana que millor fita el temps de resposta de cada subjecte. Finalment, destaquem algunes conclusions i perspectives d'investigació futura en ambdues línies de treball en el Capítol 6. / Mira Iglesias, A. (2021). Applications of Visibility Graphs for the representation of Time Series [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176012
59

Métodos iterativos fraccionarios para la resolución de ecuaciones y sistemas no lineales: diseño, análisis y estabilidad

Candelario Villalona, Giro Guillermo 16 June 2023 (has links)
[ES] El cálculo fraccionario es una extensión del cálculo clásico, donde el orden de las derivadas o integrales es un número real. Hoy en día, el cálculo fraccionario tiene numerosas aplicaciones en ciencias e ingeniería. La principal razón es el mayor grado de libertad de las herramientas del cálculo fraccionario en comparación con las herramientas del cálculo clásico. Muchos problemas reales se modelan por medio de ecuaciones diferenciales fraccionarias no lineales cuyo sistema de ecuaciones es no lineal, y por tanto, es conveniente que se adapten procedimientos iterativos para resolver problemas no lineales con el uso de derivadas fraccionarias, y observar cuál es la consecuencia en la convergencia de dicho método. En esta Tesis Doctoral diseñamos nuevos procedimientos iterativos con derivadas fraccionarias (o su aproximación) que al menos igualen a los métodos clásicos en términos de orden de convergencia, mediante la introducción de las derivadas fraccionarias de Riemann-Liouville, de Caputo y conformable (o sus aproximaciones). También, proponemos estudiar la estabilidad de estos esquemas con el uso de planos de convergencia, y planos dinámicos en algunos casos. Finalmente, pretendemos diseñar una técnica que nos permita obtener la versión fraccionaria conformable (o versión con derivada conformable o su aproximación) de cualquier procedimiento iterativo clásico para problemas no lineales. En el Capítulo 2 se exponen los conceptos previos que serán necesarios para el desarrollo de los siguientes capítulos: Se presentan los conceptos básicos relacionados con métodos de punto fijo, se muestran los esquemas clásicos que trataremos en esta memoria, y finalmente se introducen las herramientas del cálculo fraccionario que serán necesarias para el diseño de procedimientos iterativos fraccionarios. En el Capítulo 3 se diseñan métodos fraccionarios (o esquemas con derivadas fraccionarias) de tipo Newton-Raphson escalares con las derivadas de Caputo, de Riemann Liouville y la conformable. También diseñamos esquemas fraccionarios de Newton-Raphson escalares de mayor orden. Finalmente, realizamos el análisis de convergencia de dichos procedimientos y estudiamos su estabilidad. En el Capítulo 4 se diseña la versión vectorial del método de Newton-Raphson conformable visto en el Capítulo 3. Antes, es necesario definir nuevos conceptos y establecer nuevos resultados que serán necesarios para el dersarrollo de este esquema. Finalmente, realizamos el análisis de convergencia y estudiamos su estabilidad. En el Capítulo 5 se diseñan procedimientos fraccionarios de tipo Traub escalares con derivadas de Caputo y de Riemann-Liouville. También se diseña una técnica general para obtener la versión fraccionaria conformable escalar de cualquier método clásico, y se usa esta técnica para diseñar algunos esquemas conformables multipunto escalares: de tipos Traub, Chun-Kim, Ostrowski y Chun. Por último, se realiza el análisis de convergencia y se estudia la estabilidad de tales procedimientos. En el Capítulo 6 se diseñan métodos fraccionarios libres de derivadas escalares de tipos Steffensen y Secante (el cual tiene memoria), donde es necesario la aproximación de derivadas conformables. Aquí se usa la técnica general propuesta en el Capítulo 5 para obtener la versión conformable de cada esquema. Finalmente, realizamos el análisis de convergencia y se estudia la estabilidad de dichos procedimientos. En el Capítulo 7 se presentan las conclusiones y líneas futuras de investigación. / [CA] El càlcul fraccionari és una extensió del càlcul clàssic, on l'ordre de les derivades o integrals és un nombre real. Hui dia, el càlcul fraccionari té nombroses aplicacions en ciències i enginyeria. La principal raó és el major grau de llibertat de les eines del càlcul fraccionari en comparació amb les eines del càlcul clàssic. Molts problemes reals es modelen per mitjà d'equacions diferencials fraccionàries no lineals el sistema d'equacions de les quals és no lineal, i per tant, és convenient que s'adapten procediments iteratius per a resoldre problemes no lineals amb l'ús de derivades fraccionàries, i observar quina és la conseqüència en la convergència d'aquest mètode. En aquesta Tesi Doctoral dissenyem nous procediments iteratius amb derivades fraccionàries (o la seua aproximació) que almenys igualen als mètodes clàssics en termes d'ordre de convergència, mitjançant la introducció de les derivades fraccionàries de Riemann-Liouville, de Caputo i conformable (o les seues aproximacions). També, proposem estudiar l'estabilitat d'aquests esquemes amb l'ús de plans de convergència, i plans dinàmics en alguns casos. Finalment, pretenem dissenyar una tècnica que ens permeta obtindre la versió fraccionària conformable (o versió amb derivada conformable o la seua aproximació) de qualsevol procediment iteratiu clàssic per a problemes no lineals. En el Capítol 2 s'exposen els conceptes previs que seran necessaris per al desenvolupament dels següents capítols: Es presenten els conceptes bàsics relacionats amb mètodes de punt fix, es mostren els esquemes clàssics que tractarem en aquesta memòria, i finalment s'introdueixen les eines del càlcul fraccionari que seran necessàries per al disseny de procediments iteratius fraccionaris. En el Capítol 3 es dissenyen mètodes fraccionaris (o esquemes amb derivades fraccionàries) de tipus Newton-Raphson escalars amb les derivades de Caputo, de Riemann Liouville i la conformable. També dissenyem esquemes fraccionaris de Newton-Raphson escalars de major ordre. Finalment, realitzem l'anàlisi de convergència d'aquests procediments i estudiem la seua estabilitat. En el Capítol 4 es dissenya la versió vectorial del mètode de Newton-Raphson conformable vist en el Capítol 3. Abans, és necessari definir nous conceptes i establir nous resultats que seran necessaris per al dersarrollo d'aquest esquema. Finalment, realitzem l'anàlisi de convergència i estudiem la seua estabilitat. En el Capítol 5 es dissenyen procediments fraccionaris de tipus Traub escalars amb derivades de Caputo i de Riemann-Liouville. També es dissenya una tècnica general per a obtindre la versió fraccionària conformable escalar de qualsevol mètode clàssic, i s'usa aquesta tècnica per a dissenyar alguns esquemes conformables multipunt escalars: de tipus Traub, Chun-Kim, Ostrowski i Chun. Finalment, es realitza l'anàlisi de convergència i s'estudia l'estabilitat de tals procediments. En el Capítol 6 es dissenyen mètodes fraccionaris lliures de derivades escalars de tipus Steffensen i Assecant (el qual té memòria), on és necessari l'aproximació de derivades conformables. Ací s'usa la tècnica general proposta en el Capítol 5 per a obtindre la versió conformable de cada esquema. Finalment, realitzem l'anàlisi de convergència i s'estudia l'estabilitat d'aquests procediments. En el Capítol 7 es presenten les conclusions i línies futures d'investigació. / [EN] Fractional calculus is an extension of classical calculus, where the order of the derivatives or integrals is a real number. Today, fractional calculus has numerous applications in science and engineering. The main reason is the higher degree of freedom of the fractional calculus tools compared to the classical calculus tools. Many real problems are modeled by means of nonlinear fractional differential equations whose system of equations is nonlinear, and therefore it is convenient that iterative procedures are adapted to solve nonlinear problems with the use of fractional derivatives, and observe what the consequence is in the convergence of said method. In this Doctoral Thesis we design new iterative procedures with fractional derivatives (or their approximation) that are at least equal to the classical methods in terms of convergence order, by introducing the Riemann-Liouville, Caputo and conformable fractional derivatives (or their approximations). Also, we propose to study the stability of these schemes with the use of convergence planes, and dynamic planes in some cases. Finally, we intend to design a technique that allows us to obtain the conformable fractional version (or version with conformable derivative or its approximation) of any classical iterative procedure for nonlinear problems. In Chapter 2 the previous concepts that will be necessary for the development of the following chapters are exposed: The basic concepts related to fixed point methods are presented, the classic schemes that we will deal with in this memory are shown, and finally the tools of the fractional calculus that will be necessary for the design of fractional iterative procedures. In Chapter 3, scalar Newton-Raphson type fractional methods (or schemes with fractional derivatives) are designed with the Caputo, Riemann Liouville and conformable derivatives. We also design higher order scalar Newton-Raphson fractional schemes. Finally, we perform the convergence analysis of these procedures and study their stability. In Chapter 4, the vector version of the conformable Newton-Raphson method seen in Chapter 3 is designed. Before, it is necessary to define new concepts and establish new results that will be necessary for the development of this scheme. Finally, we perform the convergence analysis and study its stability. In Chapter 5, fractional procedures of the scalar Traub type with derivatives of Caputo and Riemann-Liouville are designed. A general technique is also designed to obtain the scalar conformable fractional version of any classical method, and this technique is used to design some scalar multipoint conformable schemes: of Traub, Chun-Kim, Ostrowski and Chun types. Finally, the convergence analysis is carried out and the stability of such procedures is studied. In Chapter 6 free fractional methods of scalar derivatives of Steffensen and Secant types (which has memory) are designed, where the conformable derivatives approximation is necessary. Here we use the general technique proposed in Chapter 5 to obtain the conformable version of each scheme. Finally, we carry out the convergence analysis and the stability of these procedures is studied. In Chapter 7 the conclusions and future lines of research are presented. / Candelario Villalona, GG. (2023). Métodos iterativos fraccionarios para la resolución de ecuaciones y sistemas no lineales: diseño, análisis y estabilidad [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194270
60

The natural transform decomposition method for solving fractional differential equations

Ncube, Mahluli Naisbitt 09 1900 (has links)
In this dissertation, we use the Natural transform decomposition method to obtain approximate analytical solution of fractional differential equations. This technique is a combination of decomposition methods and natural transform method. We use the Adomian decomposition, the homotopy perturbation and the Daftardar-Jafari methods as our decomposition methods. The fractional derivatives are considered in the Caputo and Caputo- Fabrizio sense. / Mathematical Sciences / M. Sc. (Applied Mathematics)

Page generated in 0.1122 seconds