• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 39
  • 19
  • 15
  • 9
  • 8
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 267
  • 57
  • 53
  • 38
  • 38
  • 36
  • 36
  • 33
  • 32
  • 29
  • 28
  • 28
  • 28
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Semi-conducteurs organiques de type n pour la conversion d'énergie / N-type organic semiconductors for energy conversion

Bardagot, Olivier 15 October 2019 (has links)
A l’heure où les impacts du changement climatique sont devenus indéniables, le développement des énergies décarbonées s’impose. Potentiellement bas coût comparées aux technologies établies, les technologies organiques émergentes offrent une alternative éco-efficiente pour l’exploitation de l’énergie solaire et de l’énergie thermique (< 473 K). Dans le premier chapitre, les avantages et inconvénients des différentes technologies actuellement développées sont discutés. Les dispositifs photovoltaïques, tout comme thermoélectriques, requièrent deux types de matériaux conduisant respectivement les trous (type p) et les électrons (type n). Malgré des avancées remarquables, le développement de semi-conducteurs de type n constitue un levier d’amélioration majeur pour les technologies organiques. Dans ce contexte, ce travail doctoral présente la conception, la synthèse, la caractérisation et la mise en œuvre au sein de dispositifs, de polymères et petites molécules pi-conjugués de type n.Basées sur trois unités électro acceptrices – l’isoindigo (ISI), le naphtalène diimide (NDI) et le benzodifurandione-oligo(p-phénylènevinylène) fluoré (FBDOPV) – la conception et la synthèse de copolymères alternés sont présentées dans le deuxième chapitre. Ces polymères démontrent de hautes affinités électroniques comprises entre 3,5 eV et 4,1 eV. Les études de modélisations DFT et de diffraction de rayons X en couches minces ont permis d’identifier les principaux facteurs structuraux à l’origine des hautes mobilités en électron obtenues en transistor organique à effet de champ allant jusqu’à 0,26 cm2.V-1.s-1.Pour une application thermoélectrique, le dopage moléculaire de ces semi conducteurs organiques est requis et fait l’objet du troisième chapitre. Les conditions nécessaires à la thermo- et photo activation du dopant N-DMBI ont été identifiées. En particulier, la dégradation du dopant activé en présence d’oxygène a été mise en évidence par diffraction de rayons X sur monocristaux. Les polymères et deux petites molécules à base d’ISI et NDI ont été dopés avec succès. Les mécanismes de dopage et les conductivités obtenues sont discutés au cas par cas à l’aide d’expériences spectroscopiques UV Visible-Proche-Infrarouge et Résonance Paramagnétique Electronique. Des conductivités de l’ordre de 10-4 S.cm-1 sont obtenues sans apport énergétique ni avant ni après dépôt. Des conductivités encourageantes de l’ordre de 10-3 S.cm-1 pour une petit molécule à base de NDI et de 10-2 S.cm-1 pour un polymère à base de FBDOPV ont été atteintes. La stabilité et la réversibilité des conductivités des couches minces exposées à l’air ont été examinées et corrélées au niveau LUMO des matériaux. Le contrôle minutieux des conditions de dépôts et de dopage ont permis l’obtention d’un facteur de puissance de l’ordre de 0,3 µW.m 1.K-2 associé à une conductivité thermique de 0,53 W.m-1.K-1. Des figures de mérite d’environ 2.10-4 à 303 K et 5.10-4 à 388 K ont été mesurées, lesquelles représentent les premières valeurs reportées à ce jour pour un semi-conducteur organique dopé n sur un même dispositif.Ces matériaux permettent également le remplacement des dérivés fullerènes en dispositif photovoltaïque comme présenté dans le dernier chapitre. Ils démontrent notamment de forte propriétés d’absorption, étendue jusqu’au domaine proche infrarouge pour l’un des polymères. Un rendement de conversion de 1,3% a été obtenu en cellule solaire à hétérojonction en volume « tout-polymère » avant optimisation. Suivant une conception moléculaire de type donneur-espaceur-accepteur, deux dérivés d’ITIC ont été conçus et caractérisées. La modification de substituants alkyles sur l’espaceur permet d’obtenir des propriétés d’absorptions et d’organisations améliorées comparé à ITIC. De hautes tensions de circuit-ouvert allant jusqu’à 1,10 V et des rendements de 4,2% ont été obtenus avec ces accepteurs non-fullerènes. / At a time when the impacts of climate change have become undeniable, the development of low-carbon energies is crucial. Potentially low cost compared to established technologies, emerging organic technologies offer an eco-efficient alternative for harvesting solar and thermal (< 473 K) energies. In the first chapter, the advantages and drawbacks of the different technologies currently being developed are discussed. Photovoltaic devices, like thermoelectric devices, require two types of materials conducting holes (p type) and electrons (n-type) respectively. Despite remarkable advances, the development of n-type semiconductors represents a major lever for improving organic technologies. In this context, this doctoral work presents the design, synthesis, characterization and device developments of innovative pi-conjugated n-type polymers and small molecules.Based on three electron-accepting units – isoindigo (ISI), naphthalene diimide (NDI) and fluorinated benzodifurandione-oligo(p-phenylenevinylene) (FBDOPV) – the design and synthesis of alternated copolymers are presented in the second chapter. These polymers exhibit high electron affinities ranging from 3.5 eV to 4.1 eV. DFT modelling and thin-film X-ray diffraction studies allowed to identify the main structural aspects leading to electron mobility as high as 0.26 cm2.V 1.s 1 achieved in organic field effect transistors.For thermoelectricity, molecular doping of these organic semiconductors is required. It is the subject of the third chapter. The necessary conditions for thermo- and photo-activation of N DMBI dopant have been identified. In particular, the degradation of the activated dopant in the presence of oxygen has been demonstrated by single crystal X-ray diffraction. Each polymer and two small molecules based on ISI and NDI cores have successfully being doped. The doping mechanisms and conductivities obtained are discussed on a case by case basis using UV-Visible-Near-Infrared and Electron Paramagnetic Resonance spectroscopies. In particular, conductivities in the range of 10-4 S.cm-1 were obtained without external energy supply neither before nor after deposition. Encouraging conductivities in the range of 10-3 S.cm 1 for a small molecule based on NDI and 10-2 S.cm 1 for a polymer based on FBDOPV have been achieved. The stability and reversibility of thin film conductivities when exposed to air were investigated and correlated to the LUMO level of the materials. The thorough control of deposition and doping conditions have afforded to achieve a power factor of about 0.3 µW.m-1.K-2 associated to a thermal conductivity of 0.53 W.m 1.K 1. Figure of merits of approximately 2.10-4 at 303 K and 5.10-4 at 388 K have been obtained, which represent the first values reported to date for an n-doped organic semiconductor measured on a single device.These materials also allow the replacement of fullerene derivatives in photovoltaic devices as presented in the last chapter. In particular, they demonstrate strong absorption properties, extended to the near infrared domain for one of the polymers. A conversion efficiency of 1.3% was obtained in all polymer bulk-heterojunction solar cell before optimization. Following the donor-spacer-acceptor approach, two ITIC derivatives have been designed and characterized. The modification of alkyl substituents on the spacer provides improved absorption and molecular packing properties compared to ITIC. High open-circuit voltages up to 1.10 V and conversion efficiencies of 4.2% have been achieved with these non-fullerene acceptors.
172

Synthese und Oberflächencharakterisierung von Poly(vinylamin)-co-Poly(vinylformamid)-Kieselgel-Hybrid-Materialien

Voigt, Ina 29 January 2001 (has links)
In der vorliegenden Arbeit wird der Einfluß der Ladungsdichte des Polyelektrolyts sowie der Molmasse und der Ionenkonzentration der Lösung bei der Adsorption von Poly(vinylformamid) und Poly(vinylamin) an Kieselgel 60 und an Titandioxid unter-sucht. Die Charakterisierung der Polyelektrolyteigenschaften der modifizierten anorganischen Partikel erfolgt mit elektrokinetischen und potentiometrischen Mes-sungen. Es konnte gezeigt werden, daß Poly(vinylamine) mit geringen Ladungs-dichte ein Screening-enhanced-Verhalten zeigen, während bei hoher Ladungsdichte am Polyelektrolyt ein Screening-reduced-Verhalten vorliegt. Der Einfluß der Polymerfunktionalisierung auf die Oberflächenpolarität der Hybridpartikel wurde durch UV-VIS-spektroskopische Bestimmung der ET(30)-Werte nach Reichardt nachgewiesen. Ausgehend von den Ergebnissen der Adsorption von Poly(vinylaminen) wird die Synthese von geladenen Netzwerken auf der Oberfläche der anorganischen Partikel vorgestellt. Die aus wässriger Lösung adsorbierte Polyelektrolytschicht wird dabei in einem zweiten Schritt in einem organischen Lösungsmittel mit bifunktionellen Vernetzermolekülen (4,4´-Diisocyanato)diphenylmethan, Fulleren C60] umgesetzt. Der erfolgreiche Ablauf der Reaktion konnte im Fall des Isocyanats mit Festkörper-NMR-, ESCA- und ATR-FTIR-Messungen nachgewiesen werden. Um die Umsetzung mit Fullerenen nachzuweisen, wurde die EPR-Spektroskopie eingesetzt.
173

Strategien zur Optimierung organischer Solarzellen: Dotierte Transportschichten und neuartige Oligothiophene mit reduzierter Bandlücke

Uhrich, Christian 15 April 2008 (has links)
Organische Solarzellen besitzen das Potential für leichte und zugleich flexible photovoltaische Anwendungen, die kostengünstig hergestellt werden können und damit einen Beitrag zur Verminderung der Emission von Kohlendioxid, Methan und Stickoxiden leisten können. Zur Herstellung von organischen Solarzellen werden nur geringe Mengen der organischen Materialien benötigt und die Prozessierung findet bei vergleichsweise geringen Temperaturen statt, was die Abscheidung auf z. B. Plastikfolie ermöglicht. Man unterscheidet drei Arten von organischen Solarzellen. Erstens, Solarzellen bestehend aus kleinen Molekülen, die im Vakuum durch Sublimation auf das Substrat abgeschieden werden. Zweitens, Polymersolarzellen, deren Schichten aus Lösung meist durch „spin-coating“ oder Druckverfahren präpariert werden. Und drittens, „dye-sensitized“ Solarzellen (auch Grätzel-Zellen), die aus einer porösen Schicht Titandioxid und einem flüssigen Elektrolyten für den Ladungsträgertransport bestehen. Diese Arbeit beschäftigt sich ausschließlich mit organischen Solarzellen aus kleinen Molekülen. Die höchsten erreichten Wirkungsgrade organischer Solarzellen aus kleinen Molekülen liegen derzeit bei etwa 5 % . Um die Effizienzen von Solarzellen aus kleinen Molekülen zu steigern, ist es einerseits notwendig das Verständnis der physikalischen und chemischen Prozesse innerhalb der Bauelemente genauer beschreiben zu können, andererseits werden neue Materialien mit optimierten Eigenschaften für die organische Photovoltaik benötigt. In dieser Arbeit wurden zwei Strategien zur Optimierung organischer Solarzellen verfolgt: • Durch die Optimierung des Versatzes der Energieniveaus der organischen Materialien konnte die Leerlaufspannung in einem Modellsystem maximiert werden. An diesem Modellsystem wurden der Ursprung der Leerlaufspannung und die Rekombinationsdynamik von photogenerierten Ladungsträgern untersucht. Bezüglich der Leerlaufspannung zeigen Solarzellen, deren photoaktive Materialien in einer Mischschicht vorliegen, im Vergleich zu Solarzellen, die eine photoaktive Doppelschicht beinhalten, fundamentale Unterschiede . • Des Weiteren wurden neue Thiophenderivate untersucht, die als aktive Materialien in organischen Solarzellen eingesetzt wurden. Durch elektronenziehende Endgruppen wurde das Ionisationspotential der Thiophenderivate abgesenkt und die optische Bandlücke verringert. Das Thiophenderivat DCV3T fungiert in Kombination mit herkömmlichen Donator-Materialien als Akzeptor. In Mischschichten aus DCV3T und C60 kommt es durch einen Hin- und Rücktransfer der Anregungsenergie zwischen den Materialien statt der Generation von freien Ladungsträgern zu einer Erhöhung der Triplett-Exzitonendichte auf DCV3T . Diese Exzitonen besitzen auf Grund der hohen Lebensdauer von Triplett-Exzitonen das Potential für eine erhöhte Exzitonendiffusionslänge, die in einem neuen Solarzellenkonzept ausgenutzt werden konnte . / Organic solar cells have the potential for light weight and flexible applications. They can be manufactured cost-effectively and can thus contribute to the reduction of the emission of carbon dioxide, methane and nitric oxides. In order to manufacture organic solar cells, only small amounts of organic materials are required. They can be processed at comparably low temperatures. Therefore, the fabrication on substrates like plastic foil is possible. Three different types of organic solar cells exist. The first kinds are solar cells prepared from small molecules that are manufactured via sublimation of the material in a vacuum. The second kind are polymer solar cells manufactured from solution by spin coating techniques or ink jet printing. And thirdly, dye sensitized solar cells - also known as Grätzel cells - consisting of a porous layer of titanium dioxide and most commonly a liquid electrolyte for the charge transport. This work deals exclusively with small molecule solar cells. The highest power conversion efficiencies reached by small molecule organic photovoltaics are now in the range of 5 %. In order to increase the efficiencies of solar cells prepared from small molecules, two major aspects must be developed. The understanding of the physical processes within the organic devices must be improved. And secondly, new materials are required with physical properties optimized for organic photovoltaics. In this work, I followed two strategies for optimizing organic solar cells: • By optimizing the offset of energy levels between donor and acceptor material, the open circuit voltage could be increased. In the investigated model system, the origin of the open circuit voltage and the recombination dynamics of photo generated charge carriers were analyzed. Concerning the open circuit voltage, solar cells consisting of a donor acceptor double layer structure, show fundamental differences to solar cells consisting of a donor acceptor blend. • Furthermore, new thiophene derivatives used as photoactive materials were investigated. By the attachment of electron withdrawing end groups, the ionization potential of the oligothiophenes is increased and the optical band gap is reduced at the same time. The investigated thiophene derivative DCV3T acts as an acceptor in combination with the commonly used donor-materials. A back- and forth-transfer of excitation energy is observed in blends of DCV3T and fullerene C60. In these blends, excitons are not separated into free charge carriers. This back and forth transfer leads to an enhancement of the density of triplet excitons on DCV3T. These excitons have a potentially high diffusion length due to the long lifetime of triplet excitons. This effect was utilized in the organic solar cells.
174

Magnetic studies on lanthanide-based endohedral metallofullerenes

Velkos, Georgios 13 December 2021 (has links)
​My PhD thesis is an in-depth study of the magnetic properties of a series of different lanthanide-based endohedral metallofullerenes. They are sphere-like shape carbon molecules (fullerenes) with embedded magnetic lanthanide elements inside, suitable for spintronic and high dense-data storage applications. In this work, I studied two families of endohedral metallofullerenes (di-lanthanides and Dy-oxides) which showed great versatility in the magnetic behavior, depending on the type of the encapsulated cluster, and the size and shape of the carbon cage.:Magnetic studies on lanthanide dimetallofullerenes Gd2@C80(CH2Ph) and Gd2@C79N Tb2@C80(CH2Ph) and Tb2@C79N TbY@C80(CH2Ph) Ho2@C80(CH2Ph) Er2@C80(CH2Ph) Magnetic studies on Dy-oxide clusterfullerenes Dy2O@C72 Dy2O@C74 Dy2O@C82 (three isomers)
175

Synthese und magnetische Eigenschaften von Dysprosium-Nitrid-Clusterfullerenen

Schlesier, Christin 16 January 2019 (has links)
Der Fokus dieser Dissertation liegt auf den gemischt-metallischen Dysprosium-Nitrid-Clusterfullerenen. Durch die Inklusion von bis zu drei Lanthanoiden mit unvollständig gefüllten 4f-Orbitalen weisen diese Clusterfullerene eine Vielzahl interessanter magnetischer Eigenschaften auf. Die magnetische Charakterisierung der Nitrid-Clusterfullerene DyxSc3-xN@C80-Ih (x = 1 - 3) zeigte bereits 2014 den Einfluss der Stöchiometrie auf das magnetische Verhalten und stufte diese Verbindungen als Einzelmolekülmagnete ein. Im Rahmen dieser Arbeit wurde das Zusammenspiel zwischen den strukturellen Eigenschaften und dem magnetischen Verhalten der Clusterfullerene untersucht. Der Fokus lag auf der Synthese und der magnetischen Charakterisierung von Clusterfullerenen mit unterschiedlicher Kohlenstoffkäfiggröße bzw. -isomerie, unterschiedlicher Clusterzusammensetzung bzw. Cluster-bildender Metalle und dem Einfluss des nichtmetallischen Zentralatoms des Clusters. Die Dysprosium-Nitrid-Clusterfullerene wurden über ein modifiziertes Krätschmer-Huffman-Verfahren und unter Verwendung der trimetallischen Nitridtemplatmethode synthetisiert und anschließend mittels HPLC fraktioniert und massenspektrometrisch analysiert. Die magnetische Charakterisierung der Clusterfullerene gelang mittels DC-SQUID-Magnetometrie. Die im Rahmen dieser Arbeit untersuchten Fullerene konnten als Einzelmolekülmagnete identifiziert werden. Das magnetische Verhalten der Nitrid-Clusterfullerene wird hauptsächlich durch den Cluster M3N und weniger durch den diamagnetischen Kohlenstoffkäfig bestimmt. Jedoch wurde für DySc2N@C80-D5h und Dy2ScN@C80-D5h eine verringerte Lebensdauer der Magnetisierung im Vergleich zu ihren Analoga mit Ih-Kohlenstoffkäfigsymmetrie beobachtet. Stärkeren Einfluss hat die Kohlenstoffkäfiggröße. Für DySc2N@C68, Dy2ScN@C84 und Dy2ScN@C88 wurde eine deutliche Abnahme der Remanenz, der Blocktemperaturen und der Relaxationzeiten festgestellt. Als Ursache werden die veränderten Dy-N-Bindungslängen diskutiert. Die Clusterfullerene Dy2MN@C80-Ih und DyM2N@C80-Ih (M = Gd, Er, Lu) enthalten neben Dysprosium ein weiteres Lanthanoid im Cluster. Das zweite Lanthanoid M ruft eine erhebliche Änderungen der magnetischen Eigenschaften hervor. Die paramagnetischen Metalle Gd und Er wirken sich stark negativ auf die magnetische Remanenz aus. Für Dy2LuN@C80-Ih und DyLu2N@C80-Ih wurde ein ähnliches magnetisches Verhalten wie für DyxSc3-xN@C80-Ih (x = 1, 2) verzeichnet. Durch die Verdünnung des Fullerens DyLu2N@C80-Ih mit der diamagnetischen Verbindung Lu3N@C80-Ih wurde zusätzlich eine Erhöhung der Hysterese der Magnetisierung im untersuchten Temperaturbereich registriert. Der Einfluss der nichtmetallischen Clusterspezies auf die magnetischen Eigenschaften wurde anhand der Carbid-Clusterfullerene Dy2TiC@C80-Ih, -D5h und Dy2TiC2@C80-Ih untersucht. Obwohl die Fullerene Dy2TiC@C80-Ih bzw. -D5h sich nur durch die isoelektronische Ti-C-Clustereinheit von den Nitrid-Clusterfullerenen unterscheiden, ist deren Remanenz nur halb so groß. Ein weiteres Kohlenstoffatom im Cluster, wie in Dy2TiC2@C80-Ih, ruft eine weitere Abnahme der Hysterese der Magnetisierung hervor. Die veränderte Bindungssituation der Carbid-Cluster wird als Ursache für das beobachtete magnetische Verhalten herangezogen.
176

Soft Fullerene Materials: Click Chemistry and Supramolecular Assemblies

Zhang, Wenbin 21 May 2010 (has links)
No description available.
177

Yttrium, Gadolinium, and Lutetium Based Endohedral Metallofullerenes: From Synthesis to Application

Zhang, Jianyuan 03 February 2014 (has links)
Endohedral metalofullerenes (EMFs) have emerged as an important class of nanomaterials with vast promise in applications of molecular devices and nanomedicines. This dissertation addresses the EMF research span from synthesis to application, with an emphasis of work on trimetallic nitride template (TNT) EMF and carbide clusterfullerenes (CCFs). As a general introduction, chapter 1 reviews the main literature in TNT EMF studies. Also key works in CCF area are highlighted to show the common feature and uniqueness of this class of EMF in comparison with other EMFs. In the last part of the chapter a list of milestone progress in EMF area has been summarized. Chapter 2 is devoted to the synthetic work on EMFs. Especially, for isotopic modification, the trial and actual EMF syntheses in efforts to introduce 13C, 89Y and 177Lu are described. The next three chapters address the structural characterization of EMFs. Chapter 3 focuses on structural studies of CCFs. With detailed interpretation of 13C NMR and DFT computational results for selected members of the Y2C2@C2n family, the influence of fullerene cage on the size and shape of the yttrium carbide cluster (Y2C2)4+ is investigated. It has also been established that the carbide cluster prefers a linear shape in sufficiently large fullerene cages but adopts a compressed butterfly shape in smaller cages where space is constrained. Chapter 4 presents a systemic examination of dipole moments in TNT EMFs. The first 13C NMR study of M3N@C2(22010)-C78 is achieved on Y3N@C2(22010)-C78. In addition, dipole moments of the M3N@C2n (n=39-44) family are probed by interpretation of chromatographic retention behavior, DFT computational results and single-crystal data. It has been found that TNT EMFs with pentalene motifs exhibit enhanced dipole moments due to the cluster-cage interplay. Chapter 5 provides full characterization of the M2C2@C1(51383)-C84 (M=Y, Gd) molecule, which contains the first example of an asymmetric fullerene cage with fused pentagons. Furthermore, it is suggested that the C1(51383)-C84 cage is capable of a cascade of rearrangements into high symmetry and stable fullerene cages via well-established mechanistic steps, namely, extrusion of C2 units from pentalene or indene motifs and Stone-Wales transformations. As an important intermediate in the formation of high symmetry fullerene cages, the C1(51383)-C84 represents a missing link that implies the "top-down" fullerene formation mechanism. Chapter 6 describes the endeavor to functionalize two exotic EMFs, the room-temperature radical heterometallofullerene Gd2@C79N, and the egg-shaped TNT EMF Gd3N@C84. The reactivity of Gd2@C79N is directly compared to Y2@C79N, Gd3N@C80 and Sc3N@C80 in two reactions and the paramagnetic Gd2@C79N is proven to be very inert toward many known common fullerene cage reactions. Eventually both EMFs have been successfully functionalized via the Bingel reaction, and the derivatives are characterized with HPLC and mass-spectrometry. Chapter 7 compares the effective magnetic moment of Gd3N@C80 and Gd3N@C84, together with the previously reported Gd@C82. The magnetic moment has a second-order contribution to the T1 relaxivity and thereby is an important factor to evaluate an EMF's value in application as MRI contrast agents. Furthermore the influence of cluster motion to magnetic behavior in TNT EMF is discussed. / Ph. D.
178

Die Berechnung von Struktur, Energetik und kernmagnetischen Abschirmungen von Fullerenen und ihren Derivaten

Heine, Thomas 27 July 1999 (has links) (PDF)
No description available.
179

Die Berechnung von Struktur, Energetik und kernmagnetischen Abschirmungen von Fullerenen und ihren Derivaten

Heine, Thomas 26 August 1999 (has links)
No description available.
180

Surface Engineering and Synthesis of Graphene and Fullerene Based Nanostructures

Gnanaprakasa, Tony Jefferson January 2016 (has links)
Graphene is a two-dimensional carbon structure that exhibits remarkable structure-property relations. Consequently, there has been immense effort undertaken towards developing methods for graphene synthesis. Chemical vapor deposition (CVD) and chemical exfoliation from colloidal suspensions are two common methods used for obtaining graphene films. However, the underlying experimental conditions have to be carefully optimized in order to obtain graphene films of controllable thickness and morphology. In this context, a significant part of this dissertation was devoted towards developing and improving current CVD-based and chemical exfoliation based methods for synthesizing high quality graphene films. Specifically, in the CVD based procedure for growing graphene on copper, the effect of surface pretreatment of copper was investigated and the quality of graphene grown using two different pretreatment procedures was compared and analyzed. In particular, graphene grown on electropolished copper (EP-Cu) was analyzed with respect to its surface morphology, surface roughness and thickness, and compared with graphene grown on as cold-rolled acetic acid cleaned copper (AA-Cu). It was shown that electropolishing of the Cu substrates prior to graphene growth greatly enhanced the ability to obtain flat, uniform, predominantly single layer graphene surface coverage on copper. The reported surface roughness of the graphene on EP-Cu was found to be much lower than for previously reported systems, suggesting that the electropolishing procedure adopted in this work has great promise as a pretreatment step for Cu substrates used in CVD growth of graphene. Obtaining graphene from colloidal suspensions of graphitic systems was also examined. In this work, an acid (H₂SO₄ + HNO₃) treatment process for intercalating natural graphite flakes was examined and the ability to reversibly intercalate and deintercalate acid ions within graphitic galleries was investigated. More importantly, a rapid-thermal expansion (RTP) processing was developed to thermally expand the acid-treated graphite, followed by exfoliation of predominantly bilayer graphene as well as few layer graphene flakes in an organic solvent (N, N-Dimethylformamide - DMF). The developed method was shown to provide bilayer and few layer graphene flakes in a reliable fashion. Fullerene is another carbon nanostructure that has garnered attention due to unique structure and chemical properties. Recently, there has been increased focus towards harnessing the properties of fullerenes by synthesizing fullerene self-assemblies in the form of extended rods, tubes and more complex shapes. Current methods to synthesize these self-assemblies are either cumbersome, time consuming or expensive. In this context, an alternate, straightforward dip-coating procedure technique to self-assemble equal-sized, faceted, polymerized fullerene nanorods on graphene-based substrates in a rapid fashion was developed. By suitably modifying the kinetics of self-assembly, the ability to reliably control the spatial distribution, size, shape, morphology and chemistry of fullerene nanorods was achieved.

Page generated in 0.0576 seconds