• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic Photovoltaic Cells of Fully Conjugated Coil-like Poly-(3-hexylthiophene) and Rod-like Heterocyclic Aromatic Polymer Doped with Nano-carbon Particles

Wang, Lian-bing 26 July 2009 (has links)
Fully conjugated heterocyclic aromatic rod-like polymer poly-p-phenylene- benzobisoxazole (PBO) and coil-like poly-(3-hexylthiophene) (P3HT) were applied as opto-electronically active layer. The two polymers mixed with nano-carbon particles, having excellent optical absorption and electric conductivity, of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) or esterified multi-wall carbon nano-tube (MWNT-COOC10H21) as well as a hole transporting layer of PEDOT:PSS. Photovoltaic (PV) cells of indium-tin-oxide (ITO)/PEDOT:PSS/nano-carbon particle:fully conjugated polymer/Al were fabricated for optical and electrical characterizations. Tri-layered structure of ITO/PEDOT:PSS/PBO/PCBM/Al produced a straight current-voltage relation showing no PV effects. Upon changing the active layer into PCBM doped P3HT layer (PCBM:P3HT), it produced good PV effects suggesting that the doped layer had a penetrating network to facilitate the PV effects. When PCBM or MWNT-COOC10H21 was doped into P3HT, the device PV effects were increased significantly with nano-carbon particle concentration. The direct-current electric conductivity parallel to the film surface (£m¡ü)was increased with the nano-carbon particle concentration. By changing the thickness of hole transporting PEDOT:PSS and of opto-electronically active layers, it was found that when the PEDOT:PSS layer was decreased from 90 nm to 32 nm, there was a slight increase of PV cell efficiency. The active layer of PCBM:P3HT with a thickness of 99 nm had the best optical absorption and charge transport leading to an increase of PV cell efficiency.

Page generated in 0.0982 seconds