• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Nitrogen Acquisition, and Metabolism, by Potassium in Rice, and Barley

Balkos, Konstantine Dino 16 December 2009 (has links)
We present the first characterization of K+ optimization of N uptake and metabolism in an NH4+-tolerant species, tropical lowland rice (cv. IR-72). 13N radiotracing showed that increased K+ supply reduces futile NH4+ cycling at the plasma membrane, diminishing the excessive rates of both unidirectional influx and efflux. Pharmacological testing showed that low-affinity NH4+ influx may be mediated by both K+ and non-selective cation channels. Suppression of NH4+ influx by K+ occurred within minutes of increasing K+ supply. Increased K+ reduced free [NH4+] in roots and shoots by 50-75%. Plant biomass was maximized on 10 mM NH4+ and 5 mM K+, with growth 160% higher than 10 mM NO3--grown plants, and 220% higher than plants grown at 10 mM NH4+ and 0.1 mM K+. Unlike in NH4+-sensitive barley, growth optimization was not attributed to a reduced energy cost of futile NH4+ cycling at the plasma membrane. Activities of the key enzymes glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC) were strongly stimulated by elevated K+, mirroring plant growth and protein content. Improved plant performance through optimization of K+ and NH4+ is likely to be of substantial agronomic significance in the world’s foremost crop species.
2

Optimization of Nitrogen Acquisition, and Metabolism, by Potassium in Rice, and Barley

Balkos, Konstantine Dino 16 December 2009 (has links)
We present the first characterization of K+ optimization of N uptake and metabolism in an NH4+-tolerant species, tropical lowland rice (cv. IR-72). 13N radiotracing showed that increased K+ supply reduces futile NH4+ cycling at the plasma membrane, diminishing the excessive rates of both unidirectional influx and efflux. Pharmacological testing showed that low-affinity NH4+ influx may be mediated by both K+ and non-selective cation channels. Suppression of NH4+ influx by K+ occurred within minutes of increasing K+ supply. Increased K+ reduced free [NH4+] in roots and shoots by 50-75%. Plant biomass was maximized on 10 mM NH4+ and 5 mM K+, with growth 160% higher than 10 mM NO3--grown plants, and 220% higher than plants grown at 10 mM NH4+ and 0.1 mM K+. Unlike in NH4+-sensitive barley, growth optimization was not attributed to a reduced energy cost of futile NH4+ cycling at the plasma membrane. Activities of the key enzymes glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC) were strongly stimulated by elevated K+, mirroring plant growth and protein content. Improved plant performance through optimization of K+ and NH4+ is likely to be of substantial agronomic significance in the world’s foremost crop species.

Page generated in 0.0519 seconds