1 |
On Fuzzy Implication Classes - Towards Extensions of Fuzzy Rule-Based SystemsCruz, Anderson Paiva 20 December 2012 (has links)
Made available in DSpace on 2015-03-03T15:47:46Z (GMT). No. of bitstreams: 1
AndersonPC_DISSERT.pdf: 1402040 bytes, checksum: 960b15bc1392a94fb7ba8ba980e3a0b4 (MD5)
Previous issue date: 2012-12-20 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Atualmente, h? diferentes defini??es de implica??es fuzzy aceitas na
literatura. Do ponto de vista te?rico, esta falta de consenso demonstra
que h? discord?ncias sobre o real significado de "implica??o l?gica"
nos contextos Booleano e fuzzy. Do ponto de vista pr?tico, isso gera
d?vidas a respeito de quais "operadores de implica??o" os engenheiros
de software devem considerar para implementar um Sistema Baseado
em Regras Fuzzy (SBRF). Uma escolha ruim destes operadores pode
implicar em SBRF's com menor acur?cia e menos apropriados aos
seus dom?nios de aplica??o. Uma forma de contornar esta situa??o e
conhecer melhor os conectivos l?gicos fuzzy. Para isso se faz necess?rio
saber quais propriedades tais conectivos podem satisfazer. Portanto,
a m de corroborar com o significado de implica??o fuzzy e corroborar
com a implementa??o de SBRF's mais apropriados, v?rias leis
Booleanas t?m sido generalizadas e estudadas como equa??es ou inequa??es nas l?gicas fuzzy. Tais generaliza??es s?o chamadas de leis
Boolean-like e elas n?o s?o comumente v?lidas em qualquer sem?ntica
fuzzy. Neste cen?rio, esta disserta??o apresenta uma investiga??o sobre
as condi??es suficientes e necess?rias nas quais tr?s leis Booleanlike
?like ? y ? I(x, y), I(x, I(y, x)) = 1 e I(x, I(y, z)) = I(I(x, y), I(x, z))
?? se mant?m v?lidas no contexto fuzzy, considerando seis classes de
implica??es fuzzy e implica??es geradas por automorfismos. Al?m
disso, ainda no intuito de implementar SBRF's mais apropriados,
propomos uma extens?o para os mesmos / There are more than one acceptable fuzzy implication definitions in
the current literature dealing with this subject. From a theoretical
point of view, this fact demonstrates a lack of consensus regarding
logical implication meanings in Boolean and fuzzy contexts. From
a practical point of view, this raises questions about the implication
operators" that software engineers must consider to implement a
Fuzzy Rule Based System (FRBS). A poor choice of these operators
generates less appropriate FRBSs with respect to1 their application
domain. In order to have a better understanding of logical connectives,
it is necessary to know the properties that they can satisfy.
Therefore, aiming to corroborate with fuzzy implication meaning and
contribute to implementing more appropriate FRBSs to their domain,
several Boolean laws have been generalized and studied as equations or
inequations in fuzzy logics. Those generalizations are called Booleanlike
laws and a lot of them do not remain valid in any fuzzy semantics.
Within this context, this dissertation presents the investigation of sucient
and necessary conditions under which three Boolean-like laws |
y I(x; y), I(x; I(y; x)) = 1 and I(x; I(y; z)) = I(I(x; y); I(x; z)) |
hold for six known classes of fuzzy implications and for implications
generated by automorphisms. Moreover, an extension to FRBSs is
proposed
|
Page generated in 0.1236 seconds