• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 565
  • 290
  • 67
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 932
  • 430
  • 268
  • 155
  • 150
  • 144
  • 137
  • 130
  • 106
  • 99
  • 81
  • 76
  • 73
  • 73
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Complexité des pavages apériodiques : calculs et interprétations / Complexity of aperiodic tilings : computations and interpretations

Julien, Antoine 10 December 2009 (has links)
La théorie des pavages apériodiques a connu des développements rapides depuis les années 1980, avec la découvertes d'alliages métalliques cristallisant dans une structure quasi-périodique.Dans cette thèse, on étudie particulièrement deux méthodes de construction de pavages : par coupe et projection, et par substitution. Deux angles d'approche sont développés : l'étude de la fonction de complexité, et l'étude métrique de l'espace de pavages.Dans une première partie, on calcule l'asymptotique de la fonction de complexité pour des pavages coupe et projection, généralisant ainsi des résultats connus en dynamiques symbolique pour la dimension 1. On montre que pour un pavage coupe et projection canonique N sur d sans période, la complexité croît (à des constantes près) comme n à la puissance a, où a est un entier compris entre d et N-d.Ensuite, on se base sur une construction de Pearson et Bellissard qui construisent un triplet spectral sur les ensembles de Cantor ultramétriques. On suit leur construction dans le cas d'ensembles de Cantor auto-similaires. Elle s'applique en particulier aux transversales d'espaces de pavages de substitution.Enfin, on fait le lien entre la distance usuelle sur l'enveloppe d'un pavage et la complexité de ce pavage. Les liens entre complexité et métrique permettent de donner une preuve directe du fait suivant : la complexité des pavages de substitution apériodiques de dimension d croît comme n à la puissance d.La question de liens entre la complexité et la topologie (et pas seulement avec la distance) reste ouverte. Nous apportons cependant des réponses partielles dans cette direction. / Since the 1980s, the theory of aperiodic tilings developed quickly, motivated by the discovery of metallic alloys which crystallize in an aperiodic structure. This highlighted the need for new models of crystals.Two models of aperiodic tilings are specifically studied in this dissertation. First, the cut-and-project method, then the inflation and substitution method. Two point of view are developed for the study of these objects: the study of the complexity function associated to a tiling, and the metric study of the associated tiling space.In a first part, the asymptotic behaviour of the complexity function for cut-and-project tilings is studied. The results stated here generalize formerly known results in the specific case of dimension 1. It is proved that for an (N,d) canonical projection tiling without periods, the complexity grows like n to the a, with a an integer greater or equal to d but lesser or equal to N-d.A second part is based on a construction by Pearson and Bellissard of a spectral triple for ultrametric Cantor sets. Their construction is applied to self-similar Cantor sets. It applies in particular to the transversal of substitution tiling spaces.In a last part, the links between the complexity function of a tiling and the usual distance on its associated tiling space are made explicit. These links can provide a direct and complete proof of the following fact: the complexity of an aperiodic d-dimensional substitution tiling grows asymptotically as n to the d, up to constants. These links between complexity and distance raises the question of links between complexity and topology. Partial answers are given in this direction.
212

Color Lines, and Regions and Their Stereo Matching / Lignes et régions couleurs et leur appariement stéréo

Lertchuwongsa, Noppon 13 December 2011 (has links)
En vision par ordinateur, les points saillants sont des caractéristiques essentielles aux algorithmes. Les performances dépendent de paramètres extérieurs (ex. illumination). Les mesures de similarité sont centrales à la reconnaissance. Pour assurer l'efficacité de traitement, les caractéristiques extraites d'une image doivent être stables, et la mesure de similarité doit les distinguer parfaitement.Dans cette thèse, des caractéristiques conjointes géométrie/couleur sont étudiées : lignes de couleur et régions. Elles fondent la détection d'une troisième, la profondeur, qui sert en retour à évaluer leurs performanceLes lignes sont des extensions des classiques lignes de niveau: l'espace couleur 3-D est projeté sur un espace 1-D adapté pour résumer l'information chromatique là où elle est adéquate,Les régions exploitent classiquement la connexité image mais jointe à une compacité dans l'histogramme bidimensionnel issu du modèle dichromatique. L'homogénéité ainsi définie garantit une robustesse a priori aux variations d'éclairage en séparant la couleur de l'intensité et les couleurs entre elles.Cette homogénéité est exploitée selon 2 méthodes d'extraction d'ensembles compacts autour des modes de l'histogramme: extraction analytique des extrema locaux de couleur, extraction de ces mêmes extrema contrôlée par les régions correspondantes de l'image.Pour la profondeur, trois calculs de disparité stéréoscopique sont proposés et les performances comparées avec la réalité terrain:1. Appariement de lignes couleur avec une distance de Hausdorff revisitée.2. Exploitation de la forme des histogrammes de disparité par régions3.Coopération entre appariement de points et de régions. / In computer vision, salient points are essential features to algorithms. Performances depend on external parameters (e.g. illuminant). Similarity measures are central to recognition.To secure the processing efficiency, extracted features have to be stable enough, and the similarity measure needs to perfectly distinguish between them.In the thesis, joint geometrical and color features are studied: color lines and regions. They found the detection of a third one, range, that helps in turn to assess their goodness.Color lines are extensions of classical level lines: the 3 D color space is mapped onto a 1 D scale especially designed to retain the chromatic information where it is suitable.Regions require the usual image connectivity but in association with compactness in the bi-dimensional histogram stemming from the dichromatic model. The so-designed homogeneity is granting an a priori good robustness against illumination variations in separating the body colors and splitting color from intensity.The latter homogeneity gives raise to 2 methods for extracting compact sets around histogram modes: color first analysis (an analytic extraction of color local extrema) , and joint color/space analysis (same but controlled by the region growing).As for depth, 3 methods to compute the stereo disparity are proposed for their results to be confronted with the ground-truth:1. Color line matching based on a modified Hausdorff distance,2. Studying the shape of the disparity histogram between regions,3. Cooperation between pixel correlation and region matching.The robustness of the designed features is proved on several stereo pairs. Future work deals with improving efficacy and accuracy.
213

Champs de Maxwell en espace-temps de Reissner - Nordstr∫m- De Sitter : décroissance et scattering conforme / Maxwell field on the Reissner-Nordst∫rm-De Sitter manifold : decay and conformal scattering

Mokdad, Mokdad 30 September 2016 (has links)
Nous étudions les champs de Maxwell à l'extérieur de trous noirs de Reissner-Nordstrom-de Sitter. Nous commençons par étudier la géométrie de ces espaces-temps : nous donnons une condition sous laquelle la métrique admet trois horizons puis dans ce cadre nous construisons l'extension analytique maximale d'un trou noir de Reissner-Nordstrom-de Sitter. Nous donnons ensuite une description générale des champs de Maxwell en espace-temps courbe, de leur décomposition en composantes spinorielle ainsi que de leur énergie. La première étude analytique établit la décroissance ponctuelle de champs de Maxwell à l'extérieur d'un trou noir de Reissner-Nordstrom-de Sitter ainsi que la décroissance uniforme de l'énergie sur un hyperboloïde qui s'éloigne dans le futur. Ce chapitre utilise des méthodes de champs de vecteurs (estimations d'énergie géométriques) dans l'esprit des travaux de Pieter Blue. Enfin nous construisons une théorie du scattering conforme pour les champs de Maxwell à l'extérieur du trou noir. Ceci consiste en la résolution du problème de Goursat pour les champs de Maxwell à la frontière isotrope de l'extérieur du trou noir, constituée des horizons du trou noir et horizons cosmologiques futurs et passés. Les estimations de décroissance uniforme de l'énergie sont cruciales dans cette partie. / We study Maxwell fields on the exterior of Reissner-Nordstrom-de Sitter black holes. We start by studying the geometry of these spacetimes: we give the condition under which the metric admits three horizons and in this case we construct the maximal analytic extension of the Reissner-Nordstrom-de Sitter black hole. We then give a general description of Maxwell fields on curves spacetimes, their decomposition into spin components, and their energies. The first result establishes the pointwise decay of the Maxwell field in the exterior of a Reissner-Nordstrom-de Sitter black hole, as well as the uniform decay of the energy flux across a hyperboloid that recedes in the future. This chapter uses the vector fields methods (geometric energy estimates) in the spirit of the work of Pieter Blue. Finally, we construct a conformal scattering theory for Maxwell fields in the exterior of the black hole. This amounts to solving the Goursat problem for Maxwell fields on the null boundary of the exterior region, consisting of the future and past black hole and cosmological horizons. The uniform decay estimates of the energy are crucial to the construction of the conformal scattering theory.
214

La périodicité dans les enseignements scientifiques en France et au Vietnam : une ingénierie didactique d'introduction aux fonctions périodiques par la modélisation / The periodicity in teaching science in France and Vietnam : a didactical engineering for an introduction to periodic functions by modeling

Nguyen Thi, Nga 01 September 2011 (has links)
L'objet central de l'étude est la modélisation mathématique de phénomènes périodiques dans l'enseignement secondaire, plus particulièrement celle des phénomènes périodiques temporels. L'étude part d'un constat établi en comparant les enseignements secondaires français et vietnamien : soit on évite l'enseignement de la modélisation mathématique en concevant le rapport des mathématiques aux autres disciplines scientifiques comme un rapport d'application (Viêt Nam), soit on préconise la prise en compte de la modélisation mathématique sans donner les moyens aux enseignants de mathématiques de l'enseigner (France). La périodicité est le concept central dans le processus de modélisation des phénomènes cycliques et des phénomènes oscillatoires. Dans la genèse scientifique de ce concept, les fonctions périodiques, notamment les fonctions trigonométriques, se sont constituées progressivement comme modèles de grandeurs variables en général en fonction du temps, qui retournent régulièrement et indéfiniment au même état. A partir d'une enquête épistémologique sur les phénomènes périodiques temporels étudiés par la Physique, nous repérons deux modèles mathématiques, C (mouvements circulaires uniformes) et O (oscillations harmoniques) avec leurs différents registres, graphique et algébrique. Une analyse institutionnelle examine et compare la présence de ces deux modèles dans les enseignements secondaires de mathématiques et de physique, en France et au Viêt Nam. Cette analyse met en évidence la faiblesse de l'articulation entre ces deux modèles et l'absence de technique pour effectuer le passage de l'un des modèles à l'autre, alors qu'il s'agit d'un des enjeux de la modélisation elle-même. Le dispositif expérimental se compose d'un questionnaire aux élèves vietnamiens et d'une ingénierie didactique qui organise, dans un environnement de géométrie dynamique et en articulant les deux modèles C et O, la construction de fonctions périodiques comme modèles de phénomènes de co-variations périodiques. / The focus of the study is mathematical modeling of periodic phenomena in secondary education, particularly that of temporal periodic phenomena. The study starts from an observation by comparing the French and Vietnamese secondary education: either they avoid the teaching of mathematical modeling in designing the relationship of mathematics to other scientific disciplines as an applicable connection (Vietnam) or they advocate the consideration of mathematical modeling without empower mathematics teachers to teach it (France). The periodicity is the central concept in the modeling process of cyclical and oscillatory phenomena. In the scientific genesis of this concept, the periodic functions especially trigonometric functions, was established gradually as models of variable quantities which return regularly and indefinitely in the same state over time. From an epistemological investigation of the temporal periodic phenomena studied by physics, we identify two mathematical models, C (uniform circular movement) and O (harmonic oscillations) with their different registers, graphic and algebraic. Institutional analysis examines and compares the presence of these two models in secondary education of mathematics and physics in France and Vietnam. This analysis shows the weakness of the articulation between these two models and the absence of technique to make the transition from one model to another which is one of the stakes of modeling itself. The experimental way consists of a questionnaire to Vietnamese pupils and a didactical engineering that organizes in a dynamic geometrical environment by articulating both models C and O, for the construction of periodic functions as models of phenomena of periodic co-variations.
215

Solutions avec flux et géométrie généralisée exceptionnelle / Flux backgrounds and exceptional generalised geometry

De Felice, Oscar 26 March 2018 (has links)
Cette thèse traite de compactifications avec flux en théorie des cordes et supergravité. D’abord, nous étudions les réductions dimensionnelles des théories de type II et de supergravité en onze dimensions, en utilisant la géométrie généralisée exceptionnelle. Nous commençons par l’introduction des techniques mathématiques nécessaire à cette thèse, nous nous concentrons sur les G-structures et leur extension à la géométrie généralisée. Après, nous passons à discuter les compactifications à proprement parler. Précisément, nous nous concentrons sur type IIA, en construisant la version de la géométrie généralisée exceptionnelle décrivant cette supergravité et en trouvant les déformations de la dérivé de Lie généralisée correctes qui permettre de tenir compte et décrire correctement la mass de Romans. Nous présentons la méthode de Scherk-Schwarz généralisée qui nous permettre de trouver des ansatze consistants qui préservent la quantité maximale de supersymétrie. Aussi, nous appliquons cette méthode à des exemples différents des truncations sur les sphères, nous sommes capables de reproduire l’ansatz sur la sphere six-dimensionnelle et le tensor d’imbrication, qui nous donne une supergravité jaugée ISO(7) dyoniquement en quatre dimensions. Pour des sphères de dimension d = 2; 3; 4, nous trouvons une obstruction à avoir des parallelisations généralisées dans les cas massifs. Ceci donne une indication du fait que des réductions dimensionnelles en présence de mass de Romans peut pas exister. En outre, nous étudions les calibrations générales sur des backgrounds AdS en type IIB et M-théorie. Nous établissons qu’elles sont décrites par les structures de Sasaki- Einstein exceptionnelles, et nous focalisons notre attention sur les vectors de Reeb généralisés. Les inégalités pour la limite sur l’énergie peuvent être dérivées par la décomposition de la condition donnée par la symétrie _ ou dans la même façon, par la décomposition des bilinéaires des champs spinoriels existants en littérature. Nous expliquons comme la fermeture des formes de calibration est liée à l’intégrabilité de la structure de Sasaki-Einstein exceptionnelle décrivant le background. En particulier, nous faisons ça pour des branes remplissant l’espace ou ponctuelles. En faisant ça, nous montrons que la partie de forme du vector twisté en M-théorie donne les correctes calibrations généralisées. Le cas au sujet des backgrounds en type IIB donne des résultats analogues. / The main topic of this thesis are flux compactifications. Firstly, we study dimensional reductions of type II and eleven-dimensional supergravities using exceptional generalised geometry. We start by presenting the needed mathematical tools, focusing on G-structures and their extension to generalised geometry. Then, we move our focus on compactifications. In particular, we mainly focus on type IIA, building the version of exceptional generalised geometry adapted to such supergravity and finding the right deformations of generalised Lie derivative to accomodate the Romans mass. We describe the generalised Scherk-Schwarz method to find consistent truncation ansatze preserving the maximal amount of supersymmetry. We apply such a method to several examples of truncations on spheres, we reproduce the truncation ansatz on S6 and the embedding tensor leading to dyonically gauged ISO(7) supergravity in four dimensions. For spheres of dimension d = 2; 3; 4, we find an obstruction to have generalised parallelisations in massive theory, giving the evidence that maximally supersymmetric reductions might not exist. As further point, we study generalised calibrations on AdS backgrounds in type IIB and M-theory. We find these are described by Exceptional Sasaki-Einstein structures and we place the focus on the generalised Reeb vectors. The inequalities for the energy bound are derived by decomposing a _-symmetry condition and equivalently, bispinors in calibration conditions from existing literature. We explain how the closure of the calibration forms is related to the integrability conditions of the Exceptional Sasaki- Einstein structure, in particular for AdS space-filling or point-like branes. Doing so, we show that the form parts of the twisted vector structure in M-theory provides the expected generalised calibrations. The IIB case yields similar results.
216

Resolution of singularities in foliated spaces / Résolution des singularités dans un espace feuilleté

Belotto Da Silva, André Ricardo 28 June 2013 (has links)
Considérons une variété régulière analytique M sur le corps réel ou complexe, un faisceau d'idéaux J défini sur M, un diviseur à croisement normaux simples E et une distribution singulière involutive Θ tangent à E.L'objectif principal de ce travail est d'obtenir une résolution des singularités du faisceau d'idéaux J qui préserve certaines ``bonnes" propriétés de la distribution singulière Θ. Plus précisément, la propriété de R-monomialité : l'existence d'intégrales premières monomiales. Ce problème est naturel dans le contexte où on doit étudier l'interaction d'une variété et d'un feuilletage et, donc, est aussi reliée au problème de la monomilisation des applications et de résolution ``quasi-lisse" des familles d'idéaux.- Le premier résultat donne une résolution globale si le faisceau d'idéaux J est invariant par la distribution singulière;- Le deuxième résultat donne une résolution globale si la distribution singulière Θ est de dimension 1 ;- Le troisième résultat donne une uniformisation locale si la distribution singulière Θ est de dimension 2.On présente aussi deux utilisations des résultats précédents. La première application concerne la résolution des singularités en famille analytique, soit pour une famille d'idéaux, soit pour une famille de champs de vecteurs. Pour la deuxième, on applique les résultats à un problème de système dynamique, motivé par une question de Mattei. / Let M be an analytic manifold over the real or complex field, J be a coherent and everywhere non-zero ideal sheaf over M, E be a reduced SNC divisor and Θ an involutive singular distribution everywhere tangent to E. The main objective of this work is to obtain a resolution of singularities for the ideal sheaf J that preserves some ``good" properties of the singular distribution Θ. More precisely, the R-monomial property : the existence of local monomial first integrals. This problem arises naturally when we study the ``interaction" between a variety and a foliation and, thus, is also related with the problem of monomialization of maps and of ``quasi-smooth" resolution of families of ideal sheaves.- The first result is a global resolution if the ideal sheaf J is invariant by the singular distribution Θ;- The second result is a global resolution if the the singular distribution Θ has leaf dimension 1;- The third result is a local uniformization if the the singular distribution Θ has leaf dimension 2;We also present two applications of the previous results. The first application concerns the resolution of singularities in families, either of ideal sheaves or vector fields. For the second application, we apply the results to a dynamical system problem motivated by a question of Mattei.
217

The use of geometric structures in graphics and optimization / L'utilisation des structures géométriques pour synthèse d'image et optimisation

Bus, Norbert 07 October 2015 (has links)
Les données du monde réel ont manifestement une composante géométrique importante et suggère les patterns géométriques signifiants. Les méthodes qui utilisent la nature géométrique des données sont activement développés dans plusieurs domaines scientifiques, comme, par exemple, la géométrie algorithmique, la géométrie discrète, la synthèse d'images, la vision par ordinateur. Dans le travail présent, nous utilisons les structures géométriques afin de modéliser des algorithmes efficaces pour deux domaines, celui de synthèse d'images et de l'optimisation combinatoire. Dans la première partie il s'agit de la structure de données géométriques, appelé une décomposition bien-séparée, et son application pour un des problèmes les plus difficiles dans la synthèse d'images, un efficace rendu photo-réalistique. Une solution consiste à appliquer toute une famille de méthodes de many-lights qui fait une approximation d'illumination globale par calcule individuelle d'illumination avec un grand nombre de VPLs (virtual point light) répartis sur les surfaces. L'application individuelle de chacun VPL résulte dans un grand nombre des calculs. Une des stratégies de la réussite pour réduire les computations est de faire les clusteurs considérés qui sont consideré comme une seul émetteur. Nous utilisons la décomposition bien-séparée de points comme le fondement de la structure des données susceptible de procéder à un calcul préliminaire et de conserver d'une façon compacte un grand nombre des clusterisations individuels potentiels ce qui montre que la clusterisation des VPL plus correspondante peut être extraite de cette structure de données d'une manière efficace. Nous montrons qu'au lieu de regroupper les points et/ou VPL indépendemment il vaut mieux produire les clusteurs sur l'espace de produit du nombre des points à nuancer et un groupe de VPL à la base de l'illumination des paires induite. En plus, nous proposons une technique adaptive afin d'échantillonner pour réduire le nombre des demandes de vérifications de visibilité pour chaque clusteur de l'espace de produit. Notre méthode consiste à détenir chaque émetteur qui peut être rapproché par VPL, matériaux spéculaire et à performer les méthodes précédents réconnus les meilleurs jusqu'au présent. La deuxième partie est consacrée au développement de nouveaux algorithmes d'approximation pour un problème fondamental de NP complet dans la géométrie algorithmique, précisément le problème du hitting set, avec une précision pour le cas d'un groupe de points et d'un groupe de disques, nous souhaiterons calculer les plus petits nombre du points qui touche tous les disques. Il arrive que les algorithmes efficaces à détecter le hitting set repose sur une structure géométrique clée, appelée epsilon-net. Nous donnons un algorithme utilisant uniquement les triangulisations de Delaunay pour construire les epsilon-nets de taille 13.4/epsilon. Nous donnons une implémentation pratique de la technique à calculer les hitting sets dans le temps quasi-linéaire en utilisant des epsilon-nets de petites tailles. Nos résultats aboutissent à une approximation de 13.4 pour le problème de hitting set par un algorithme qui fonctionne même pour les grands ensembles de données. Pour les ensembles de taille plus petite, nous proposons une implémentation de la technique de recherche locale avec une approximation bornes supérieures, avec le résultat obtenu d'approximation de (8 + epsilon) dans le temps O(n^{2.34}) / Real-world data has a large geometric component, showing significant geometric patterns. How to use the geometric nature of data to design efficient methods has became a very important topic in several scientific fields, e.g., computational geometry, discrete geometry, computer graphics, computer vision. In this thesis we use geometric structures to design efficient algorithms for problems in two domains, computer graphics and combinatorial optimization. Part I focuses on a geometric data structure called well-separated pair decomposition and its usage for one of the most challenging problems in computer graphics, namely efficient photo-realistic rendering. One solution is the family of many-lights methods that approximate global illumination by individually computing illumination from a large number of virtual point lights (VPLs) placed on surfaces. Considering each VPL individually results in a vast number of calculations. One successful strategy the reduce computations is to group the VPLs into a small number of clusters that are treated as individual lights with respect to each point to be shaded. We use the well-separated pair decomposition of points as a basis for a data structure for pre-computing and compactly storing a set of view independent candidate VPL clusterings showing that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We show that instead of clustering points and/or VPLs independently what is required is to cluster the product-space of the set of points to be shaded and the set of VPLs based on the induced pairwise illumination. Additionally we propose an adaptive sampling technique to reduce the number of visibility queries for each product-space cluster. Our method handles any light source that can be approximated with virtual point lights (VPLs), highly glossy materials and outperforms previous state-of-the-art methods. Part II focuses on developing new approximation algorithms for a fundamental NP-complete problem in computational geometry, namely the minimum hitting set problem with particular focus on the case where given a set of points and a set of disks, we wish to compute the minimum-sized subset of the points that hits all disks. It turns out that efficient algorithms for geometric hitting set rely on a key geometric structure, called epsilon-net. We give an algorithm that uses only Delaunay triangulations to construct epsilon-nets of size 13.4/epsilon and we provide a practical implementation of a technique to calculate hitting sets in near-linear time using small sized epsilon-nets. Our results yield a 13.4 approximation for the hitting set problem with an algorithm that runs efficiently even on large data sets. For smaller datasets, we present an implementation of the local search technique along with tight approximation bounds for its approximation factor, yielding an (8 + epsilon)-approximation algorithm with running time O(n^{2.34})
218

Etude de quelques sous-variétés des algèbres de Lie symétriques semi-simples.

Bulois, Michaël 24 November 2009 (has links) (PDF)
Les algèbres de Lie ont été introduites vers la fin du XIXème siècle afin d'étudier certains problèmes de nature géométrique. Dans un soucis de classification de ces objets, les algèbres de Lie semi-simples se sont vues conférer un rôle important. Les algèbres de Lie symétriques sont, elles, une généralisation des algèbres de Lie. De plus, il existe une correspondance bijective entre les algèbres de Lie réelles et les algèbres de Lie symétriques complexes, ce qui renforce l'intérêt porté à ces dernières. Un second niveau de structure des algèbre de Lie (semi-simples complexe) joue un rôle important. Il s'agit de considérer l'algèbre de Lie g comme une G-variété où G est le groupe algébrique adjoint de g opérant via l'action adjointe sur g. Il s'avère alors utile d'étudier ceci dans le cadre de la géométrie algébrique. Les propriétés géométriques de certaines variétés issues des algèbres de Lie ont alors pu être étudiées. D'un point de vue général, ce travail consiste à généraliser et comprendre les propriétés de variétés analogues dans les algèbres de Lie symétriques.
219

ROTATIONS DISCRETES ET AUTOMATES CELLULAIRES

Nouvel, Bertrand 14 September 2006 (has links) (PDF)
Dans un espace discret, comme l'ensemble des points à coordonnées entières, la modélisation de l'isotropie pose des difficultés théoriques notables. À ce jour, aucune théorie géométrique sur $\ZZ^n$ n'est apte à rendre compte de l'isotropie telle qu'elle est décrite par la géométrie euclidienne. Dans l'optique de contribuer à cette problématique, nous nous intéressons à la conception d'algorithmes capables de donner aux rotations discrètes des propriétés proches de celles de la rotation euclidienne. Ces algorithmes doivent de plus fonctionner à base d'arithmétique entière. Après avoir montré la non-existence de rotation discrète transitive sur $\ZZ^n$, nous introduisons un codage de rotations discrètes que nous relions à la fois à la dynamique symbolique et aux automates cellulaires. Il s'agit alors de mener une étude locale des rotations discrètes. Cette étude se situe au carrefour entre géométrie discrète et systèmes dynamiques symboliques. La pertinence des configurations obtenues est justifiée par l'existence de transducteurs planaires capables d'effectuer des rotations à partir des configurations. Ensuite, afin de réinterpréter ces configurations dans le cadre de la théorie des systèmes dynamiques, nous étendons des notions classiques de cette théorie à la dimension 2. Pour la rotation discrétisée, la dynamique symbolique associée est conjuguée avec un jeu de deux translations orthogonales sur un tore bidimensionnel. Après analyse, nous constatons que les configurations obtenues sont des superpositions de configurations de faible complexité. Cela évoque alors les généralisations planaires des mots sturmiens étudiées entre autres par Valérie Berthé et Laurent Vuillon. Des résultats analogues sont aussi obtenus pour les rotations $3$-transvections. L'analyse les rotations discrètes par le biais de systèmes dynamiques a permis de nombreux résultats : mise en évidence de la quasipériodicité des configurations, calcul de la fréquence des symboles, caractérisation des rotations discrétisées bijectives, ce qui est aussi la réciproque du théorème d'Éric Andrès et Marie-Andrée Jacob. Nous avons aussi étudié les discontinuités du processus de rotation. Ces discontinuités ont lieu pour des angles issus d'un sous-ensemble des angles quadratiques (i.e. les angles charnières). En combinant ces remarques, nous aboutissons à deux algorithmes. Le premier algorithme réalise des rotations sans faire aucun calcul à virgule flottante et sans calculer aucun sinus ni aucun cosinus. Il fonctionne de manière incrémentale et en ordre de complexité optimal. Le second algorithme est une implémentation de la rotation $3$-transvections sur automates cellulaires. D'autres pistes pour la conception d'algorithmes sont mentionnées dans la thèse. En outre, nous nous intéressons aussi aux méthodes substitutives qui engendrent les configurations de rotations. Pour les angles quadratiques, nous montrons que les configurations de rotations sont des entrelacements de configurations autosimilaires; et nous présentons le schéma d'une approche basée sur les graphes de Rauzy pour l'inférence de substitutions planaires. En combinant ces deux approches, nous mettons en avant les éléments essentiels de la démonstration de l'autosimilarité de $C_{\pi/4}$. Les applications potentielles de cette thèse concernent à terme l'implémentation d'algorithmes de rotations pour processeurs graphiques. Elle contribue aussi à l'étude des méthodes algorithmiques pour la modélisation physique en milieu discret de phénomènes isotropes.
220

PLI ET FORME DES FEUILLES

Couturier, Etienne 30 October 2009 (has links) (PDF)
Nous sommes partis d'une analogie inédite entre la configuration de certaines feuilles dans le bourgeon et les ribambelles de papier. Quand on plie du papier et qu'on le coupe avec des ciseaux, à chaque pli va correspondre une pointe ou un creux de la ribambelle déployée. De nombreuses feuilles adoptent la même géométrie dans le bourgeon. Le bord de la feuille est replié sur un plan comme si il avait été découpé avec des ciseaux. Pour cette raison purement géométrique, les lobes et creux de la feuille déployée correspondront exactement aux plis initiaux. Nous avons nommé ces feuilles « kirigami », ce qui veut dire couper-papier en japonais. La première partie de cette thèse, purement géométrique, montre à quel point les géométries des feuilles sont contraintes par leur développement plié. Nous montrons aussi que la richesse des géométries que permet le kirigami se retrouve au sein des feuilles. La deuxième partie, plus biologique, propose à la fois un mécanisme pour le développement des plis et un candidat pour les mystérieux ciseaux. Nous concluons sur l'intérêt évolutif d'une telle organisation des feuilles dans le bourgeon.

Page generated in 0.0338 seconds