• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 771
  • 181
  • 61
  • 37
  • 16
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1319
  • 316
  • 301
  • 277
  • 269
  • 205
  • 204
  • 199
  • 182
  • 158
  • 146
  • 145
  • 142
  • 141
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

TLSS and LRS-J: probing large scale structure near and far

Tufts, Joseph Rutledge 28 August 2008 (has links)
Not available / text
442

Pseudobulges in disk galaxies : growth, structure and frequency in the local Universe

Fisher, David Bradley 27 January 2011 (has links)
Contrary to historic assumptions, bulges in the local Universe present a heterogeneous class of objects. Observations indicate that bulges are bimodal in structure, interstellar medium, stellar populations and dynamical state. Using observations in the UV, optical, near-infrared and mid-infrared we study the nature of local bulge-disk galaxies. The aim is first to find consistent means to differentiate different bulge types. Then we can use these diagnostic methods to study the properties of bulges of each type, thereby better understanding the possible formation mechanisms of each type. Finally, we will use these diagnostic methods to determine how many of each type of bulge exists in the local Universe, and thus understand how the heterogeneity of bulges may affect our understanding of galaxy evolution. Using 3.6-8.0 micron colors we show that dichotomy in bulge morphology is closely tied to the dichotomy in bulge interstellar medium. We find that those bulges with active interstellar medium, per unit stellar mass, have morphological features commonly found in disks (e.g. nuclear spirals, bars and rings). We follow this up with more robust star formation rates, as measured by linear combining UV and 24 micron luminosity, and determine that the boundary is near specific star formation rate ~30 Gyr⁻¹. We also find that the shape of bulge surface brightness profiles correlates well with morphology. When parameterized by a Sérsic function, we find that bulges with n[subscript b]<2 have disk-like morphology and those bulges with n[subscript b]>2 have morphology that is very similar to that of an elliptical galaxy. We thus conclude that bulges with disk-like nuclear morphology, specific star formation rate that is less than 30 Gyr⁻¹, and/or Sérsic index n[subscript b]<2 represents a distinct class of object. We refer to these bulges as "pseudobulges" and the complimentary set of bulges that are inactive, with high Sérsic index, and morphologically like elliptical galaxies is referred to as "classical bulges." We find that a significant amount of evidence points to pseudobulges and classical bulges originating from separate formation mechanisms. First, we rule out the possibility that pseudobulges are the result solely from mass dependent phenomenon. Rather, pseudobulges and classical bulges over lap significantly in mass, luminosity and size. Also, they are found in galaxies of similar mass, luminosity and size. Therefore, pseudobulges are not simply a low-mass phenomenon of the same process. Also, we find that many of the properties of pseudobulges are connected to properties of the outer disk. We find that the half-light radius of pseudobulges correlates linearly with the scale-length of the outer disk. Furthermore, this correlation does not exist for classical bulges. Also, the mass of pseudobulges correlates with the mass of the outer disk. We find that the star formation rate density of pseudobulges is a function of the stellar mass of the exponential outer disk such that pseudobulges with high star formation rate densities only occur more massive stellar disks. Thus it appears that both structure and growth of pseudobulges is a function of the properties of the outer disk. However, classical bulges do not show the same correlations. Also, we find that the star formation rate density of pseudobulges positively correlates with the mass density, classical bulges do not show an analogous correlation. If secular growth were responsible for the formation of pseudobulges, such a correlation should exist. Furthermore, we find that the specific star formation rates of most pseudobulges are high enough to account for the stellar mass within the typical ages of disk (~10 Gyr). We also show that classical bulges participate in the same structural parameter correlations as elliptical galaxies. Just like elliptical galaxies, as classical bulges become brighter they also become larger in radius, lower in surface density, and have higher Sérsic index. However pseudobulges behave very differently. There is little-to-no correlation between the size of pseudobulges and the luminosity, surface brightness or Sérsic index. We stress that this observation extends of 9 magnitudes in brightness. Therefore the size of pseudobulges, has thus far only been found to correlate with the size of the outer disk. Furthermore we find that pseudobulges show a positive correlation between surface density and luminosity. The behavior of pseudobulges in these parameter correlations implies that they are not virialized stellar systems that have experienced violent relaxation. Thus it is likely that the formation of pseudobulges is not like that of elliptical galaxies and classical bulges. Furthermore, the connection between pseudobulge properties and those of their associated outer disk seem to favor long-term growth that is more likely to be driven by disk processes, commonly called "secular evolution." Finally we show that the dichotomy of bulge types has a strong influence on our understanding of galaxy evolution. We find that global galaxy properties are tied to the bulge dichotomy. Galaxies with pseudobulges are found to be in "blue sequenc" galaxies and those with classical bulges are found to be in "red sequence" galaxies. A large body of literature has shown that blue and red galaxies appear to be distinct classifications of galaxies. The correlation with bulge type implies that the bulge dichotomy may be also be a consequence of the bimodal nature of galaxy evolution. Finally, we show that in the local Universe pseudobulges are by far the most common type of massive galaxy. We find that only 17% of galaxies have a detectable classical bulge. Also we show that over 3/4 of the star formation in spiral and elliptical galaxies in the local Universe occurs in galaxies with pseudobulges. Thus understanding pseudobulges is a necessary step to understanding the processes that have lead to the population of galaxies in the nearby Universe. / text
443

Tracing the evolution of submillimeter selected galaxies

Alaghband-Zadeh, Susannah January 2013 (has links)
No description available.
444

On the Prevalence of Starbursts in Dwarf Galaxies

Lee, Janice Christine January 2006 (has links)
An outstanding question in galaxy evolution research is whether the star formation histories of low mass systems are dominated by global starbursts or modes that are more quiescent and continuous. In this thesis, we quantify the prevalence of global starbursts in dwarf galaxies at the present epoch, and attempt to infer their characteristic durations, frequencies and amplitudes in the past. Our approach is to directly tally the number of bursting dwarfs in a complete local sample, and to compute the fraction of star formation that is concentrated in these systems. The resulting starburst number and mass fractions are then combined with B-V colors from the literature, the H-alpha EWs presented here, and stellar evolutionary synthesis models in order to place constraints on the average starburst duty cycle. The primary dataset used has been put together by the 11 Mpc H-alpha UV Galaxy Survey, who have collected data on an approximately volume-limited, statistical sample of star-forming galaxies within 11 Mpc of the Milky Way.Our main observational results, along with the accumulation of star formation studies of dwarf galaxies over the past three decades, paint a consistent picture where systems that are currently experiencing a massive global burst are just the 6% +/- 3% tip of a low-mass galaxy iceberg. Moreover, bursts are responsible for 22% +/- 10% of the total star formation in the overall dwarf galaxy population, so the majority of stars in low-mass systems do not appear to be formed in this mode today.Over their lifetimes, however, a greater fraction of the stellar mass of a dwarf may be formed in the burst mode. Synthesis modeling suggests that bursts cycles appear to be necessary in order to simultaneously explain the present-day observed blue B-V colors and modest H-alpha EWs of TYPICAL, CURRENTLY NON-BURSTING dwarf irregulars, unless non-standard assumptions concerning the IMF and the escape fractions of Lyman continuum photons are made. The starburst cycle that we converge upon involves burst durations of 50-100 Myrs, cycle frequencies of 1 to 3 per Gyr, and elevated burst SFRs that are a factor of 6-10 higher than the rate in the quiescent state. Galaxies characterized by such a SFH would spend ~10% of their lives in the burst state, and form ~50% of their stellar mass during this time.
445

The Space Density, Environments, and Physical Properties of Large Ly α Nebulae

Prescott, Moire Kathleen Murphy January 2009 (has links)
Powerful forces are at work in giant Ly α nebulae, a rare and mysterious population in the high redshift universe. Much like the spatially extended emission line halos around high redshift radio galaxies . but without the strong radio emission . Ly α nebulae (or Ly α 'blobs') boast copious Ly α emission (10⁴⁴ erg s⁻¹), large sizes (∼100 kpc), complex gas morphologies, and the company of numerous compact, star-forming galaxies, and may offer a window into dramatic episodes of massive galaxy formation. The small sample sizes and complex inner workings of Ly α nebulae have limited progress on understanding the their space density, environments, and physical conditions. This thesis strives to answer fundamental questions about Ly α nebulae and pave the way for understanding their role in the build up of massive galaxy systems. To address the frequency of collapse of these massive structures, we carried out the largest systematic Ly α nebula survey to date and measured the Ly α nebula space density. As an unbiased test of the environment of Ly α nebulae, we studied the surroundings of a Ly α nebula and confirmed that Ly α nebulae reside preferentially in overdense regions. To disentangle the sources of ionization, we took a census of all the compact ionization sources within a large Ly α nebula using high resolution imaging. Finally, we used photoionization modeling to put constraints on the physical conditions, the metallicity, and the sources of ionization within Ly α nebulae. Future work will be able to build on this thesis by expanding the systematic search for Ly α nebulae to other existing deep broad-band datasets, mapping the three-dimensional overdense structures in which Ly α nebulae live out to ≥ 50 (comoving) Mpc scales, and disentangling multiple sources of ionization within a larger sample of individual systems using deep optical and near-infrared spectroscopy and detailed photoionization modeling.
446

A numerical study of galaxy mass density profiles

Foyle, Kelly Ann Margaret 02 August 2007 (has links)
An understanding of the shape and nature of galaxy density profiles remains a major challenge to galaxy structure studies. The physical mechanisms thought to control these profiles include star formation rates and dynamical interactions, but we focus in this thesis on the contribution of dynamical parameters associated with the dark and baryonic matter. We follow the evolution of mass density profiles, and investigate the development of a truncation radius. Using GADGET-2, an N-body/SPH code with a prescription for star formation and feedback, and the SHARCNET computational facilities, we have generated over 200 galaxy models covering a full range of structural parameters. The galaxy models have a minimum of 1.4 million particles and most are evolved over a period of 10 Gyr. We find that the evolution of the galaxy mass density profile is controlled by the ratio of the disk mass fraction, $m_{d}$, to the halo spin parameter, $\lambda$. The strength of the two-component structure in disk profiles and speed at which this structure develops, is directly proportional to $m_{d}/\lambda$. While the development of a two-component profile is coupled to bar formation, not all barred galaxies develop a two-component profile. We also show that the slope of the outer profile is in close agreement with that of the initial profile and remains stable over time, whereas the inner profile slope evolves considerably. This result will greatly improve comparisons of observed with predicted measures of galaxy density profiles. Our galaxy database is the largest of its kind and a valuable resource for many potential galaxy structural studies. We conclude with a list of future investigations based on our study and new database. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-07-30 14:46:24.568
447

An Investigation of Sloan Digital Sky Survey Data and Multi-Band Scaling Relations of Spiral Galaxies

HALL, MELANIE 19 September 2010 (has links)
We have compiled a large sample of 3041 spiral galaxies with multi-band $gri$ photometry from the the Sloan Digital Sky Survey (SDSS) Data Release 7 archive. We compare our own extracted photometry with data products provided through the SDSS pipeline algorithms. This comparison benefits from an extensive compilation of galaxy rotational velocities, $V$, derived from HI linewidths. Galaxy sizes and luminosities can thus be compared against an unbiased and independent metric. We find the SDSS radial ($R$), and luminous, ($L$), data products to be unreliable for the construction of tight scaling relations of $R$ and $L$ with velocity ($V$). We use our own robust scaling parameters to yield the tightest $VRL$ relations possible. We further compile the largest scaling relation of galaxy baryonic mass (stars + gas) with velocity to find that the relation is not tighter, and thus no more significant, than the luminous $VL$ relation. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-09-17 16:23:20.649
448

Spectral Diagnostics of Galaxy Evolution

Moustakas, John January 2006 (has links)
Despite considerable progress in recent years, a complete description of the physical drivers of galaxy formation and evolution remains elusive, in part because of our poor understanding of star formation, and how star formation in galaxies is regulated by feedback from supernovae and massive stellar winds. Insight into the star formation histories of galaxies, and the interplay between star formation and feedback, can be gained by measuring their chemical abundances, which until recently has only been possible for galaxies in the nearby universe. However, reliable star formation and abundance calibrations have been hampered by various systematic uncertainties, and the lack of a suitable spectrophotometric sample with which to develop better calibrations. To address the limitations of existing surveys, we have obtained integrated optical spectra for a diverse sample of more than four hundred nearby star-forming galaxies. Using these data, in conjunction with observations from the Sloan Digital Sky Survey, we conduct a detailed analysis of optical star formation indicators, and develop empirical calibrations for the [O II] 3727 and H-beta 4861 nebular emission lines. Next, we investigate whether integrated spectroscopy of star forming galaxies can be used to infer their gas-phase oxygen abundances in the presence of radial abundance gradients, diffuse-ionized gas emission, and dust attenuation. We conclude that the integrated R23 parameter is generally insensitive to these systematic effects, enabling the gas-phase metallicity to be measured with a precision of +/-0.1 dex. We apply these methods to study the evolution in the luminosity-metallicity relation at 0<z<1 based on an analysis of more than 3500 I-band selected galaxies observed as part of the AGN and Galaxy Evolution Survey, and data culled from the literature. Our principal results are that, at fixed luminosity, the mean gas-phase metallicity of luminous (MB<-19 mag), star-forming galaxies at z=1 is a factor of two lower than the gas-phase metallicity in comparably luminous galaxies at z=0. However, after accounting for the effects of luminosity evolution, we find that the amount of chemical evolution for luminous galaxies corresponds to an increase of only 10%-20% since z1⁺ё, assuming a direct evolutionary connection between nearby and distant star-forming galaxies.
449

Hot gas and magnetic fields in clusters of galaxies

Tribble, Peter C. January 1989 (has links)
Many clusters of galaxies contain large quantities of hot diffuse gas. I have studied the properties of waves in this gas using Lagrangian perturbations. The gas is far more thermally stable than is commonly thought. For bremsstrahlung cooling, all modes that remain oscillatory are damped. Galaxy motions, especially the oscillations of a central cD galaxy, are an important way of generating large amplitude waves in cluster gas. This is especially pertinent in view of the growing realization that cD galaxies are not at rest with respect to the cluster. I also present evidence that weak magnetic fields tangled on scales of ~ 10 kpc are common in cluster gas. Electrons responsible for the flow of heat in the gas must travel along the field lines, leading to a global reduction in heat flux. The superposition of many different field lines implies that the cluster gas is a multiphase medium. Such a picture has been suggested independently by the claimed observation of mass drop-out from cooling flows. I also show some results from a more advanced study using real magnetic fields rather than random walk models.
450

Numerical methods of resonant dynamics for the Galaxy

Donner, Ralf January 2005 (has links)
Numerical methods of resonant dynamics with applications to the Galaxy are considered in this thesis. We derive generating functions for first-order perturbation theory and the associated orbital frequencies by matrix calculus. For two action-angle spaces (J,θ) and (i,φ) related by a canonical map I·φ+s, we show that J can be averaged over ergodic orbits φ to provide an estimator of I to within O(|s|<sup>2</sup>). We provide examples in one and two dimensions and compare the technique to calculations of actions by numerical line integration in Poincaré sections. We then use spectral dynamics and the Laskar frequency map (Laskar, 1993) to identify the dynamically important resonances of the 'flattened' axisymmetric isochrone potential. We simulate resonant capture in a low-order resonance by populating representative tori of a spherical isochrone Hamiltonian and integrating the orbits while adiabatically introducing axisymmetry. We use the averaging technique described above to observe the fraction of orbits captured, and we compare the result to a theoretical prediction. We return to first-order perturbation theory to analyse its strengths and weaknesses, in particular near orbital pericentre, and when one action is significantly smaller than another. We also reproduce the expected pendulum dynamics in the resonant action-angle plane for orbits in our capture simulation. We develop the concept of adaptive dynamics: we vary the initial orbital energy of the particles in the capture simulations and show that resonant and non-resonant orbits can be identified as clusters in the perturbed action plane. For a given Hamiltonian, we use the perturbed frequencies and a linear regression fit in the action plane as diagnostics of a set of model Hamiltonians on a grid in a suitable parameter space. We find we are able to constrain the parameters of a model Hamiltonian by this method. Finally, we reject the null hypothesis that resonant structures in phase space can be found by traditional methods of density estimation.

Page generated in 0.0517 seconds