Spelling suggestions: "subject:"heilbrun"" "subject:"galbana""
1 |
Numerische Umsetzung der Galbrun-Gleichung zur Modalanalyse strömender Medien in Außenraumproblemen unter Einsatz finiter und infiniter ElementeRetka, Stefanie 09 July 2012 (has links) (PDF)
In der vorliegenden Arbeit wird ein Programmcode zur numerischen Modalanalyse dreidimensionaler Fluide in komplexen akustischen Systemen, speziell in Resonatoren, entwickelt. Mit diesem Code ist es möglich, turbulente Strömungen im Rahmen der Modalanalyse zu berücksichtigen. Hierzu wird ein realistisches Strömungsprofil, ermittelt mithilfe eines 3D-Navier-Stokes-Lösers, verwendet.
Der Hauptteil der Arbeit befasst sich mit der Herleitung der für die Berechnung notwendigen Galbrun-Gleichung und deren Aufbereitung zur numerischen Analyse. Für die numerische Umsetzung kommt die Methode der finiten Elemente in Verbindung mit komplex konjugierten, infiniten Astley-Leis Elementen zur Anwendung. Die infiniten Elemente werden genutzt, um in den betrachteten Außenraumproblemen die Abstrahlung in das Fernfeld abzubilden.
Nach der Anwendung des entwickelten Programmcodes auf einfachere Modelle erfolgen Untersuchungen zur Intonation einer Blockflöte. Hierzu wird das Fluid innerhalb und im Nahfeld des Instruments unter Berücksichtigung des turbulenten Strömungsprofils, welches sich beim Spielen der Blockflöte ausbildet, betrachtet. Im Ergebnis stehen die Eigenwerte des Instruments in Abhängigkeit von der gewählten Griffkombination. Zur Evaluierung der Ergebnisse und zur Untersuchung des Einflusses der Strömung auf den Klang erfolgt der Vergleich mit den exakten Eigenfrequenzen.
Die Galbrun-Gleichung wurde bereits von anderen Autoren untersucht und auf akustische Problemstellungen angewendet. Im Rahmen dieser Arbeit erfolgt jedoch erstmalig die Anwendung der Galbrun-Gleichung auf Eigenwertprobleme. Darüber hinaus sind der Autorin keine Arbeiten bekannt, die sich mit dreidimensionalen Modellen befassen. In der vorliegenden Arbeit werden somit erstmals komplexe dreidimensionale Modelle unter Anwendung der Galbrun-Gleichung untersucht.
|
2 |
Numerische Umsetzung der Galbrun-Gleichung zur Modalanalyse strömender Medien in Außenraumproblemen unter Einsatz finiter und infiniter ElementeRetka, Stefanie 15 June 2012 (has links)
In der vorliegenden Arbeit wird ein Programmcode zur numerischen Modalanalyse dreidimensionaler Fluide in komplexen akustischen Systemen, speziell in Resonatoren, entwickelt. Mit diesem Code ist es möglich, turbulente Strömungen im Rahmen der Modalanalyse zu berücksichtigen. Hierzu wird ein realistisches Strömungsprofil, ermittelt mithilfe eines 3D-Navier-Stokes-Lösers, verwendet.
Der Hauptteil der Arbeit befasst sich mit der Herleitung der für die Berechnung notwendigen Galbrun-Gleichung und deren Aufbereitung zur numerischen Analyse. Für die numerische Umsetzung kommt die Methode der finiten Elemente in Verbindung mit komplex konjugierten, infiniten Astley-Leis Elementen zur Anwendung. Die infiniten Elemente werden genutzt, um in den betrachteten Außenraumproblemen die Abstrahlung in das Fernfeld abzubilden.
Nach der Anwendung des entwickelten Programmcodes auf einfachere Modelle erfolgen Untersuchungen zur Intonation einer Blockflöte. Hierzu wird das Fluid innerhalb und im Nahfeld des Instruments unter Berücksichtigung des turbulenten Strömungsprofils, welches sich beim Spielen der Blockflöte ausbildet, betrachtet. Im Ergebnis stehen die Eigenwerte des Instruments in Abhängigkeit von der gewählten Griffkombination. Zur Evaluierung der Ergebnisse und zur Untersuchung des Einflusses der Strömung auf den Klang erfolgt der Vergleich mit den exakten Eigenfrequenzen.
Die Galbrun-Gleichung wurde bereits von anderen Autoren untersucht und auf akustische Problemstellungen angewendet. Im Rahmen dieser Arbeit erfolgt jedoch erstmalig die Anwendung der Galbrun-Gleichung auf Eigenwertprobleme. Darüber hinaus sind der Autorin keine Arbeiten bekannt, die sich mit dreidimensionalen Modellen befassen. In der vorliegenden Arbeit werden somit erstmals komplexe dreidimensionale Modelle unter Anwendung der Galbrun-Gleichung untersucht.
|
3 |
Approche asymptotique pour l'étude mathématique et la simulation numérique de la propagation du son en présence d'un écoulement fortement cisailléJoubert, Lauris 26 November 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre d'étude de la simulation de la propagation du son en écoulement. L'objectif de ces travaux est l'obtention de modèles approchés permettant une prise en compte aisée des zones de fortes variations de l'écoulement porteur (couche limite de paroi, couche de mélange...). Le modèle mathématique retenu pour l'étude est celui des équations de Galbrun. La première partie est consacrée à la propagation acoustique dans un tuyau mince bidimensionnel. Une analyse asymptotique qui s'apparente à une analyse basse fréquence est menée pour obtenir un problème approché original, faisant intervenir un terme intégral non local vis à vis de la coordonnée transverse. Du fait de son originalité, l'analyse de stabilité est complexe et nécessite une étude ad hoc. Cette approche nouvelle permet de retrouver des résultats sur la stabilité des écoulements incompressible, mais aussi d'en établir de nouveaux. Nous proposons ensuite une méthode de résolution numérique basée sur une expression quasi-explicite de la solution. La question de la prise en compte des couches limites de paroi fait l'objet de la deuxième partie. Nous considérons toujours un problème bidimensionnel à paroi plane. Les cas d'une paroi parfaitement rigide et d'une paroi sur laquelle on impose une condition d'impédance sont traités. Dans les deux cas nous remplaçons la couche limite par une condition aux limites approchée, au moyen d'une analyse asymptotique. Ces conditions font intervenir la résolution du problème limite du tube et l'analyse de stabilité repose sur les résultats de la première partie. Nous explorons ensuite les propriétés physiques et mathématiques de ces problèmes approchés.
|
4 |
Rayonnement acoustique dans un écoulement cisaille : une méthode d'éléments finis pour la simulation du régime harmonique.Duclairoir, Eve-Marie 13 March 2007 (has links) (PDF)
Les travaux de cette thèse concernent le rayonnement acoustique d'une source périodique en temps placée dans un conduit Infini, contenant un guide en écoulement parallèle cisaille. Le phénomène est modélise a l'aide de l'équation de Galbrun, dont l'inconnue u est la perturbation de déplacement. L'objectif de cette étude est de développer une méthode éléments Nis, susceptible d'être étendue à des géométries et des écoulements plus complexes. Cette thèse fait suite a celle de Guillaume Legendre qui a établi, dans le cas d'un ecoulement uniforme, une formulation dite régularisée de l'´equation de Galbrun afin de corriger un défaut d'ellipticité. Le but de ce manuscrit est détendre cette méthode à un écoulement non uniforme. La difficulte supplémentaire vient du fait que la vorticite ψ = rot u (qui intervient dans le terme de régularisation) ne peut plus être calculée a priori car le cisaillement induit un couplage entre acoustique et hydrodynamique. En régime dissipatif, nous avons explicite ψ en fonction de u à l'aide d'une convolution (le long des lignes de courant). Si l'ecoulement est lent, cette formule de convolution (qui devient une intégrale très oscillante) peut être approchée par une formule differentielle beaucoup plus simple dont l'utilisation conduit a un modèle ”faible Mach”. Des idées similaires ont ensuite été utilisées pour résoudre le problème non dissipatif, a l'aide de couches PML. Les deux approches (exacte et ”faible Mach”) ont été validées par des tests numériques en 2D et en 3D.
|
5 |
Rayonnement sonore dans un écoulement subsonique complexe en régime harmonique : analyse et simulation numérique du couplage entre les phénomènes acoustiques et hydrodynamiques / Sound radiation in a complex subsonic mean flow in frequency regime : analysis and numerical simulations of the coupling between acoustic and hydrodynamic phenomenaPeynaud, Emilie 21 June 2013 (has links)
La thèse porte sur la simulation, en régime fréquentiel, du rayonnement acoustique en écoulement subsonique quelconque et dans un domaine infini. L'approche choisie s'appuie sur la résolution d'un système équivalent aux équations d'Euler linéarisées : le modèle de Galbrun. Ce modèle repose sur une représentation mixte Lagrange-Euler et aboutit à une équation dont l'unique inconnue est la perturbation du déplacement Lagrangien. Une des difficultés de l'approche de Galbrun est qu'une discrétisation directe de cette équation par une méthode d'éléments finis standard n'est pas stable. Un moyen de contourner cet obstacle est d'écrire une équation augmentée en ajoutant une nouvelle inconnue, le rotationnel du déplacement, appelée par abus vorticité. Cette approche conduit à un système qui couple une équation de type équation des ondes avec une équation de transport en régime fréquentiel. Et elle permet l'utilisation de couches parfaitement adaptées (PML) pour borner le domaine de calcul. La première partie du manuscrit est dédiée à l’étude de l’équation de transport harmonique et de sa résolution numérique, en particulier par un schéma de type Galerkin discontinu. Un des points délicats est lié au caractère oscillant des solutions de l'équation. Une fois cette étape franchie, la résolution du problème de propagation acoustique a été abordée. Une approximation basée sur l'utilisation d'éléments finis mixtes continus-discontinus avec couches parfaitement adaptées (PML) a été étudiée. En particulier, les caractères bien posés des problèmes continu et discret ainsi que la convergence du schéma numérique ont été démontrés sous certaines conditions sur l'écoulement porteur. Enfin, une mise en œuvre a été effectuée. Les résultats montrent la validité de cette approche mais aussi sa pertinence dans le cas d'écoulements complexes, voire d'écoulements dits instables / This thesis deals with the numerical simulation of time harmonic acoustic propagation in an arbitrary mean flow in an unbounded domain. Our approach is based on an equation equivalent to the linearized Euler equations called the Galbrun equation. It is derived from a mixed Eulerian-Lagrangian formulation and results in a single equation whose only unknown is the perturbation of the Lagrangian displacement. A direct solution using finite elements is unstable but this difficulty can be overcome by using an augmented equation which is constructed by adding a new unknown, the vorticity, defined as the curl of the displacement. This leads to a set of equations coupling a wave like equation with a time harmonic transport equation which allows the use of perfectly matched layers (PML) at artificial boundaries to bound the computational domain. The first part of the thesis is a study of the time harmonic transport equation and its approximation by means of a discontinuous Galerkin scheme, the difficulties coming from the oscillating behaviour of its solutions. Once these difficulties have been overcome, it is possible to deal with the resolution of the acoustic propagation problem. The approximation method is based on a mixed continuous-Galerkin and discontinuous-Galerkin finite element scheme. The well-posedness of both the continuous and discrete problems is established and the convergence of the approximation under some mean flow conditions is proved. Finally a numerical implementation is achieved and numerical results are given which confirm the validity of the method and also show that it is relevant in complex cases, even for unstable flows
|
6 |
Rayonnement acoustique dans un fluide en écoulement : analyse mathématique et numérique de l'équation de GalbrunLegendre, Guillaume 29 September 2003 (has links) (PDF)
Les travaux de cette thèse concernent la simulation numérique de la propagation acoustique dans un fluide en écoulement, en régime périodique établi. Le modèle retenu est l'équation de Galbrun, qui modélise la propagation linéaire d'ondes en présence d'un écoulement de fluide parfait en évolution adiabatique et porte sur le déplacement lagrangien. L'analyse mathématique montre qu'une méthode d'éléments finis nodaux ne permet pas, en général, d'approcher la solution de l'équation, les résultats étant alors fortement pollués par des modes numériques "parasites". Dans la première partie de la thèse, nous proposons une méthode de régularisation de l'équation pour laquelle nous prouvons la convergence d'une approximation par éléments finis nodaux pour des problèmes de diffraction dans un conduit en présence d'écoulements subsoniques uniforme ou cisaillé. La deuxième partie du document est consacrée à la construction et l'étude de couches absorbantes parfaitement adaptées, dites PML, pour le rayonnement d'une source localisée en présence d'un écoulement uniforme et dans un conduit. Nous traitons successivement le cas d'une source irrotationnelle, qui conduit à un problème scalaire, et celui d'une source quelconque. Un principe d'absorption limite est établi dans le cas général et nous démontrons un résultat de convergence exponentielle de la méthode de PML en fonction de la longueur des couches. Des résultats numériques illustrant ces approches sont présentés.
|
7 |
Développement d'une approche numérique et expérimentale pour un conduit avec traitement acoustique : application à la validation de modèles d'impédance en propagation multimodale avec écoulement / Development of a numerical and experimental approach for a duct with an acoustic treatment : application for validation of impedance models with multimodal propagation and mean flowBaccouche, Ryan 01 February 2016 (has links)
La prédiction de la réduction passive du bruit nécessite l’utilisation de modèles d’impédance acoustique fiables. La proposition de tels modèles en présence d’écoulement est un problème qui reste ouvert. Les travaux réalisés dans cette thèse sont consacrés à la mise en place d’une méthode expérimentale et numérique permettant de tester la validité de modèles d’impédance acoustique de traitements SDOF en présence d’écoulement. Cette approche repose sur la comparaison de résultats expérimentaux issus d’un banc aéroacoustique, et de résultats numériques issus d’un modèle FEM-PML axisymétrique basé sur l’équation de Galbrun. Ainsi, dans la première partie de cette thèse, le modèle FEM-PML utilisé est présenté. Dans la seconde partie, des modèles d’impédance acoustique de SDOF tenant compte de l’écoulement sont exposés, ainsi que la méthode de validation de ces modèles et les résultats de ces validations. / Prediction of noise reduction requires reliable acoustic impedance models. The proposal of such models in the presence of a mean flow is a problem which remains open. This thesis is devoted to the development of an experimental and a numerical method to test the validity of SDOF treatments acoustic impedance models in the presence of mean flow. This approach is based on the comparison of experimental results from an aeroacoustical duct, and numerical results from a FEM-PML axisymmetric model based on Galbrun’s equation. Thus, in the first part of this thesis, the FEM-PML model is presented. In the second part, some acoustic impedance models are exposed, and the validation method and the results of these validations are presented.
|
Page generated in 0.048 seconds