• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 1
  • 1
  • Tagged with
  • 17
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen zum Austausch von Carbonylsulfid (COS) über einem Waldökosystem

Steinbacher, Martin Unknown Date (has links)
Univ., Diplomarbeit, 2000--Frankfurt (Main)
2

Gas transfer at the air-water interface in a turbulent flow environment

Herlina. January 2005 (has links) (PDF)
Zugl.: Karlsruhe, Univ., Diss., 2005.
3

Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration

Strassemeyer, Jörn. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Berlin.
4

Effect of internal leaf structures on gas exchange of leaves

Pieruschka, Roland. Unknown Date (has links)
University, Diss., 2005--Düsseldorf.
5

Integrative, three-dimensional \(in\) \(silico\) modeling of gas exchange in the human alveolus / Integrative, dreidimensionale \(in\) \(silico\) Modellierung des Gasaustauschs in der menschlichen Alveole

Schmid, Kerstin January 2024 (has links) (PDF)
Die Lunge erfüllt durch den Austausch von Atemgasen eine überlebenswichtige Aufgabe. Der Gasaustausch erfolgt durch einen einfachen, aber entscheidenden passiven Diffusionsprozess. Dieser findet in den Alveolen statt, ballonartigen Strukturen, die an die peripheren Atemwege grenzen. Alveolen sind von einem dichten Netz aus kleinen Kapillaren umgeben. Hier kommt die eingeatmete Luft in unmittelbare Nähe zu dem vom Herzen kommenden sauerstoffarmen Blut und ermöglicht den Austausch von Sauerstoff und Kohlenstoffdioxid über deren Konzentrationsgradienten. Die Effizienz des Gasaustauschs kann anhand von Indikatoren wie der Sauerstoffdiffusionskapazität der Lunge und der Reaktionshalbzeit gemessen werden. Beim Menschen besteht eine beträchtliche Diskrepanz zwischen physiologischen Schätzungen der Diffusionskapazität und der theoretischen Maximalkapazität unter optimalen strukturellen Bedingungen (der morphologischen Schätzung). Diese Diskrepanz wird durch eine Reihe ineinandergreifender Faktoren beeinflusst, darunter strukturelle Elemente wie die Oberfläche und die Dicke der Diffusionsbarriere sowie physiologische Faktoren wie die Blutflussdynamik. Um die verschiedenen Rollen dieser Faktoren zu entschlüsseln, untersuchten wir, wie die morphologischen und physiologischen Eigenschaften der menschlichen alveolären Mikroumgebung kollektiv und individuell den Prozess des Gasaustauschs beeinflussen. Zu diesem Zweck entwickelten wir einen integrativen in silico Ansatz, der 3D morphologische Modellierung und Simulation von Blutfluss und Sauerstofftransport kombiniert. Im Mittelpunkt unseres Ansatzes steht die Simulationssoftware Alvin, die als interaktive Plattform für das zugrundeliegende mathematische Modell des Sauerstofftransports in der Alveole dient. Unser räumlich-zeitliches Modell wurde durch die Integration und Erweiterung bestehender mathematischer Modelle entwickelt und liefert Ergebnisse, die mit experimentellen Daten im Einklang stehen. Alvin ermöglicht eine immersive Auseinandersetzung mit dem simulierten Gasaustausch, indem sie Parameteränderungen in Echtzeit und die Ausführung mehrerer Simulationsinstanzen gleichzeitig ermöglicht während sie ein detailliertes quantitatives Feedback liefert. Die beteiligten morphologischen und physiologischen Parameter wurden mit einem Fokus auf der Mikrovaskulatur weiter untersucht. Durch die Zusammenstellung stereologischer Daten aus der Literatur und geometrischer 3D-Modellierung erstellten wir ein "sheet-flow" Modell als realistische Darstellung des menschlichen alveolären Kapillarnetzwerks. Blutfluss wurde mit Hilfe numerischer Strömungsdynamik simuliert. Unsere Ergebnisse stimmen mit früheren Schätzungen überein und unterstreichen die entscheidende Rolle von Viskositätsmodellen bei der Vorhersage des Druckabfalls in der Mikrovaskulatur. Darüber hinaus zeigten wir, wie unser Ansatz genutzt werden kann, um strukturelle Details wie die Konnektivität des alveolären Kapillarnetzes mit dem Gefäßbaum anhand von Blutflussindizes zu untersuchen. Es ist wichtig zu betonen, dass wir uns bislang auf verschiedene Datenquellen stützten und dass für weitere Fortschritte eine experimentelle Vailidierung erforderlich ist. Die Integration unserer Ergebnisse in Alvin ermöglichte die Quantifizierung des simulierten Gasaustauschprozesses über die Sauerstoffdiffusionskapazität und die Reaktionshalbzeit. Neben der Bewertung der kollektiven Einflüsse der morphologischen und physiologischen Eigenschaften erleichterte unsere interaktive Software auch die Bewertung einzelner Parameteränderungen. Die Betrachtung des Blutvolumens und der für den Gasaustausch zur Verfügung stehenden Oberfläche ergab lineare Korrelationen mit der Diffusionskapazität. Die Blutflussgeschwindigkeit hatte einen positiven, nichtlinearen Effekt auf die Diffusionskapazität. Die Reaktionshalbzeit bestätigte, dass der Gasaustauschprozess in der Regel nicht diffusionslimitiert ist. Insgesamt lieferte unser Alveolenmodell einen Wert für die Diffusionskapazität, der in der Mitte der früheren physiologischen und morphologischen Schätzung lag. Daraus lässt sich schließen, dass Phänomene auf Alveolarebene zu 50% der Limitierung der Diffusionskapazität beitragen, die in vivo eintreten. Zusammenfassend lässt sich sagen, dass unser integrativer in silico Ansatz verschiedene strukturelle und funktionelle Einflüsse auf den alveolären Gasaustausch aufschlüsselt und damit die traditionelle Forschung in der Atemwegsforschung ergänzt. Zusätzlich zeigen wir seinen Nutzen in der Lehre oder bei der Interpretation veröffentlichter Daten auf. Um unser Verständnis zu verbessern, sollten künftige Arbeiten vorrangig darauf ausgerichtet sein, einen zusammenhängenden experimentellen Datensatz zu erhalten und ein geeignetes Viskositätsmodell für Blutflusssimulationen zu finden. / The lung plays a vital role by exchanging respiratory gases. At the core of this gas exchange is a simple yet crucial passive diffusion process occurring within the alveoli. These balloon-like structures, connected to the peripheral airways, are surrounded by a dense network of small capillaries. Here, inhaled air comes into close proximity with deoxygenated blood coming from the heart, enabling the exchange of oxygen and carbon dioxide across their concentration gradients. The efficiency of gas exchange can be measured through indicators such as the diffusion capacity of the lung for oxygen and the reaction half-time. A notable discrepancy exists in humans between physiological estimates of diffusion capacity and the theoretical maximum capacity under optimal structural conditions (morphological estimate). This discrepancy is influenced by a range of interrelated factors, including structural elements like the surface area and thickness of the diffusion barrier, as well as physiological factors such as blood flow dynamics. To unravel the different roles of these factors, we investigated how morphological and physiological properties of the human alveolar micro-environment collectively and individually influence the process of gas exchange. To this end, we developed an integrative in silico approach combining 3D morphological modeling and simulation of blood flow and of oxygen transport. At the core of our approach lies the simulation software Alvin, serving as an interactive platform for the underlying mathematical model of oxygen transport within the alveolus. Developed by integrating and expanding existing mathematical models, our spatio-temporal model produces results in agreement with experimental data. Alvin allows for real-time parameter adjustments and the execution of multiple simultaneous simulation instances and provides detailed quantitative feedback, offering an immersive exploration of the simulated gas exchange process. The morphological and physiological parameters at play were further investigated with a focus on the microvasculature. By compiling a stereological database from the literature and 3D geometric modeling, we created a sheet-flow model as a realistic representation of the morphology of the human alveolar capillary network. Blood flow was simulated using computational fluid dynamics. Our findings were in line with previous estimations and highlighted the crucial role of viscosity models in predicting pressure drop across the microvasculature. Furthermore, we showcased how our approach can be harnessed to explore structural details, such as the connectivity of the alveolar capillary network with the vascular tree, using blood flow indices. It is important to emphasize that so far we have relied on different data sources and that experimental validation is needed to move forward. Integration of our findings into Alvin allowed quantification of the simulated gas exchange process through the diffusion capacity for oxygen and reaction half-time. In addition to evaluating the collective influences of the morphological and physiological properties, our interactive software facilitates the assessment of individual parameter value changes. Exploring blood volume and surface area available for gas exchange revealed linear correlations with diffusion capacity. The blood flow velocity had a positive, non-linear effect on diffusion capacity. The reaction half-time confirmed that under normal conditions, the gas exchange process is not diffusion-limited. Collectively, our alveolar model yielded a diffusion capacity value that fell in the middle of previous physiological and morphological estimates, implying that alveolar-level phenomena contribute to 50% of the diffusion capacity limitations that occur in vivo. In summary, our integrative in silico approach disentangles various structural and functional influences on alveolar gas exchange, complementing traditional investigations in respiratory research. We further showcase its utility in teaching and the interpretation of published data. To advance our understanding, future work should prioritize obtaining a cohesive experimental data set and identifying an appropriate viscosity model for blood flow simulations.
6

Auswirkungen motorischer Belastungen auf den Atemgasaustausch bei klinisch gesunden und respiratorisch erkrankten Kälbern

Höchel, Petra January 1900 (has links)
Zugl.: Berlin, Freie Univ., Diss., 2004 / Dateiformat: zip, Dateien im PDF-Format. - Erscheinungsjahr an der Haupttitelstelle: 2004
7

Gaswechsel, Kohlenstoffbilanz und Biomasseproduktion bei Typha angustifolia L. Gas exchange, carbon household and biomass production of Typha angustifolia L. /

Leffler, Sascha, January 2008 (has links)
Ulm, Univ., Diss., 2008.
8

Gaswechsel 40-jähriger Fichten (Picea abies [L.] Karst.) im Wassereinzugsgebiet der Langen Bramke/Harz /

Thorwest, Astrid. January 1994 (has links) (PDF)
Univ., Diss.--Göttingen, 1994.
9

Chronobiologie von Clusia minor: circadianer Rhythmus in einer Pflanze mit C3/CAM- intermediärem photosynthetischen Verhalten

Duarte, Heitor Monteiro. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--Darmstadt.
10

Mathematical modelling of gas exchanges in film-wrapped cucumbers /

Cazier, Jean-Baptiste. January 2000 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2000. / Includes bibliographical references.

Page generated in 0.0591 seconds