Spelling suggestions: "subject:"informationsaustausch""
11 |
Correlation of lung collapse and gas exchangeWolf, Samuel J., Reske, Alexander P., Hammermüller, Sören, Costa, Eduardo L.V., Spieth, Peter M., Hepp, Pierre, Carvalho, Alysson R., Kraßler, Jens, Wrigge, Hermann, Amato, Marcelo B. P., Reske, Andreas W. 11 August 2015 (has links) (PDF)
Background: Atelectasis can provoke pulmonary and non-pulmonary complications after general anaesthesia. Unfortunately, there is no instrument to estimate atelectasis and prompt changes of mechanical ventilation during general anaesthesia. Although arterial partial pressure of oxygen (PaO2) and intrapulmonary shunt have both been suggested to correlate with atelectasis, studies yielded inconsistent results. Therefore, we investigated these correlations.
Methods: Shunt, PaO2 and atelectasis were measured in 11 sheep and 23 pigs with otherwise normal lungs. In pigs, contrasting measurements were available 12 hours after induction of acute
respiratory distress syndrome (ARDS). Atelectasis was calculated by computed tomography relative to total lung mass (Mtotal). We logarithmically transformed PaO2 (lnPaO2) to linearize its relationships with shunt and atelectasis. Data are given as median (interquartile range).
Results: Mtotal was 768 (715–884) g in sheep and 543 (503–583) g in pigs. Atelectasis was 26 (16–47)% in sheep and 18 (13–23) % in pigs. PaO2 (FiO2 = 1.0) was 242 (106–414) mmHg in sheep and 480 (437–514) mmHg in pigs. Shunt was 39 (29–51)% in sheep and 15 (11–20) % in pigs. Atelectasis correlated closely with lnPaO2 (R2 = 0.78) and shunt (R2 = 0.79) in sheep (P-values<0.0001). The correlation of atelectasis with lnPaO2 (R2 = 0.63) and shunt
(R2 = 0.34) was weaker in pigs, but R2 increased to 0.71 for lnPaO2 and 0.72 for shunt 12 hours after induction of ARDS. In both, sheep and pigs, changes in atelectasis correlated strongly with corresponding changes in lnPaO2 and shunt. Discussion and Conclusion: In lung-healthy sheep, atelectasis correlates closely with lnPaO2 and shunt, when blood gases are measured during ventilation with pure oxygen. In lung-healthy pigs, these correlations were significantly weaker, likely because pigs have stronger hypoxic pulmonary vasoconstriction (HPV) than sheep and humans. Nevertheless, correlations improved also in pigs after blunting of HPV during ARDS. In humans, the observed relationships may aid in
assessing anaesthesia-related atelectasis.
|
12 |
Ventilationsmechanik und Gasaustausch: Identifikation eines vereinigten Modells bei maschineller BeatmungWinkler, Tilo 10 November 2021 (has links)
Die Analyse komplexer Zusammenhänge durch Modellierung und Simulation hat in der Medizin stark zugenommen. Bei der funktionellen Analyse des respiratorischen Systems bilden Ventilationsmechanik und Gasaustausch zwei wesentliche Schwerpunkte, die sich in komplexen Modellen vereinigen lassen.
Die Identifikation der Parameter eines vereinigten Modells anhand von Messungen bei Patienten liefert differenzierte Informationen über deren Zustand. Die allgemeinen Rahmenbedingungen bei dieser wie bei jeder anderen Identifikation sind philosophischer Natur und werden in einem erkenntnistheoretischen Kapitel behandelt. Schwerpunkte der Identifikation des vereinigen Modells sind: Ventilationsmechanik, anatomischer Totraum und Perfusionsverteilung.:Verzeichnis der Abkürzungen IX
1 Einleitung 1
2 Modellierung und Modelle – die Widerspiegelung der Realität 3
3 Modelle des respiratorischen Systems 11
3.1 Atmung und maschinelle Beatmung 11
3.2 Anatomie 12
3.3 Physiologie 14
3.4 Modelle der Ventilationsmechanik 18
3.5 Modelle für Gasaustausch, -mischung und -transport 21
3.6 Vereinigtes Modell der Ventilationsmechanik und des Gasaustauschs 22
3.7 Modelle und Entscheidungsunterstützungssysteme 23
3.8 Problemstellung und Motivation 25
4 Modellstruktur – Verteilungsmuster lungenphysiologischer Parameter 27
4.1 Grundlagen 27
4.2 Verteilungen lungenphysiologischer Parameter 28
4.3 Approximation – Struktur des vereinigten Modells 30
5 Messungen am Patienten 32
5.1 Vorbereitung 32
5.2 Protokoll 34
6 Ventilationsmechanik 36
6.1 Systemtheoretische Grundlagen der Identifikation 36
6.1.1 Systemtheoretische Ein-/Ausgangsbeschreibung 37
6.1.2 Selektion der Methoden zur Identifikation 38
6.2 Übertragungsfunktionen der Modelle 46
6.2.1 Zeitkontinuierliche Modelle 46
6.2.2 Zeitdiskrete Modelle 48
6.3 Rückrechnung der identifizierten Parameter in physikalische 50
6.4 Gütekriterium, Restriktion und Vergleichsmethode 51
6.5 Ergebnisse der Identifikation 53
6.5.1 Thoraxmechanik 53
6.5.2 Mechanik des respiratorischen Systems 57
6.6 Diskussion 68
7 Anatomischer Totraum 74
7.1 Grundlagen 74
7.2 Identifikation des Anstiegs der Phase III des Exspirogramms 75
7.3 Identifikation des seriellen Totraums 77
7.4 Diskussion 81
8 Perfusionsverteilung und Gasaustausch 84
8.1 Grundlagen 84
8.2 Blutgasmodelle 85
8.3 Modelle des stationären Gasaustauschs 87
8.4 Modell des an die Ventilationsmechanik gekoppelten Gasaustauschs 92
8.5 Diskussion 96
9 Zusammenfassung 99
A Anhang 102
A-1 Fachglossar 102
A-2 Indirekte Messung der Pleuradruckänderung mit ösophagealem Ballon 105
A-3 Grundlagen der multiplen Inertgaseliminationstechnik (MIGET) 106
A-4 Anmerkungen zum Abtasttheorem 108
A-5 Bestimmung der Flow-Sensor-Kennlinie mit einer Kalibrierspritze 109
A-6 Rückrechnung der identifizierten in physikalische Parameter 110
A-7 Dokumentation zum Einfluß der Filterperiodendauer TF auf die Standardabweichung des Identifikationsfehlers 113
Literaturverzeichnis 115 / The analysis for complex relationships using modeling and simulation in medicine has substantially increased. Ventilation mechanics and gas exchange are the key elements of the functional analysis of the respiratory system and can be united in a complex model.
The parameter identification of the unified model based on patient measurements provides detailed information about the patient's status. The general framework of this and other identifications is philosophical and discussed in an epistemological chapter. The key topics of the identification of the unified model are ventilation mechanics, anatomical dead space, and perfusion distribution.:Verzeichnis der Abkürzungen IX
1 Einleitung 1
2 Modellierung und Modelle – die Widerspiegelung der Realität 3
3 Modelle des respiratorischen Systems 11
3.1 Atmung und maschinelle Beatmung 11
3.2 Anatomie 12
3.3 Physiologie 14
3.4 Modelle der Ventilationsmechanik 18
3.5 Modelle für Gasaustausch, -mischung und -transport 21
3.6 Vereinigtes Modell der Ventilationsmechanik und des Gasaustauschs 22
3.7 Modelle und Entscheidungsunterstützungssysteme 23
3.8 Problemstellung und Motivation 25
4 Modellstruktur – Verteilungsmuster lungenphysiologischer Parameter 27
4.1 Grundlagen 27
4.2 Verteilungen lungenphysiologischer Parameter 28
4.3 Approximation – Struktur des vereinigten Modells 30
5 Messungen am Patienten 32
5.1 Vorbereitung 32
5.2 Protokoll 34
6 Ventilationsmechanik 36
6.1 Systemtheoretische Grundlagen der Identifikation 36
6.1.1 Systemtheoretische Ein-/Ausgangsbeschreibung 37
6.1.2 Selektion der Methoden zur Identifikation 38
6.2 Übertragungsfunktionen der Modelle 46
6.2.1 Zeitkontinuierliche Modelle 46
6.2.2 Zeitdiskrete Modelle 48
6.3 Rückrechnung der identifizierten Parameter in physikalische 50
6.4 Gütekriterium, Restriktion und Vergleichsmethode 51
6.5 Ergebnisse der Identifikation 53
6.5.1 Thoraxmechanik 53
6.5.2 Mechanik des respiratorischen Systems 57
6.6 Diskussion 68
7 Anatomischer Totraum 74
7.1 Grundlagen 74
7.2 Identifikation des Anstiegs der Phase III des Exspirogramms 75
7.3 Identifikation des seriellen Totraums 77
7.4 Diskussion 81
8 Perfusionsverteilung und Gasaustausch 84
8.1 Grundlagen 84
8.2 Blutgasmodelle 85
8.3 Modelle des stationären Gasaustauschs 87
8.4 Modell des an die Ventilationsmechanik gekoppelten Gasaustauschs 92
8.5 Diskussion 96
9 Zusammenfassung 99
A Anhang 102
A-1 Fachglossar 102
A-2 Indirekte Messung der Pleuradruckänderung mit ösophagealem Ballon 105
A-3 Grundlagen der multiplen Inertgaseliminationstechnik (MIGET) 106
A-4 Anmerkungen zum Abtasttheorem 108
A-5 Bestimmung der Flow-Sensor-Kennlinie mit einer Kalibrierspritze 109
A-6 Rückrechnung der identifizierten in physikalische Parameter 110
A-7 Dokumentation zum Einfluß der Filterperiodendauer TF auf die Standardabweichung des Identifikationsfehlers 113
Literaturverzeichnis 115
|
13 |
Correlation of lung collapse and gas exchangeWolf, Samuel J., Reske, Alexander P., Hammermüller, Sören, Costa, Eduardo L.V., Spieth, Peter M., Hepp, Pierre, Carvalho, Alysson R., Kraßler, Jens, Wrigge, Hermann, Amato, Marcelo B. P., Reske, Andreas W. 11 August 2015 (has links)
Background: Atelectasis can provoke pulmonary and non-pulmonary complications after general anaesthesia. Unfortunately, there is no instrument to estimate atelectasis and prompt changes of mechanical ventilation during general anaesthesia. Although arterial partial pressure of oxygen (PaO2) and intrapulmonary shunt have both been suggested to correlate with atelectasis, studies yielded inconsistent results. Therefore, we investigated these correlations.
Methods: Shunt, PaO2 and atelectasis were measured in 11 sheep and 23 pigs with otherwise normal lungs. In pigs, contrasting measurements were available 12 hours after induction of acute
respiratory distress syndrome (ARDS). Atelectasis was calculated by computed tomography relative to total lung mass (Mtotal). We logarithmically transformed PaO2 (lnPaO2) to linearize its relationships with shunt and atelectasis. Data are given as median (interquartile range).
Results: Mtotal was 768 (715–884) g in sheep and 543 (503–583) g in pigs. Atelectasis was 26 (16–47)% in sheep and 18 (13–23) % in pigs. PaO2 (FiO2 = 1.0) was 242 (106–414) mmHg in sheep and 480 (437–514) mmHg in pigs. Shunt was 39 (29–51)% in sheep and 15 (11–20) % in pigs. Atelectasis correlated closely with lnPaO2 (R2 = 0.78) and shunt (R2 = 0.79) in sheep (P-values<0.0001). The correlation of atelectasis with lnPaO2 (R2 = 0.63) and shunt
(R2 = 0.34) was weaker in pigs, but R2 increased to 0.71 for lnPaO2 and 0.72 for shunt 12 hours after induction of ARDS. In both, sheep and pigs, changes in atelectasis correlated strongly with corresponding changes in lnPaO2 and shunt. Discussion and Conclusion: In lung-healthy sheep, atelectasis correlates closely with lnPaO2 and shunt, when blood gases are measured during ventilation with pure oxygen. In lung-healthy pigs, these correlations were significantly weaker, likely because pigs have stronger hypoxic pulmonary vasoconstriction (HPV) than sheep and humans. Nevertheless, correlations improved also in pigs after blunting of HPV during ARDS. In humans, the observed relationships may aid in
assessing anaesthesia-related atelectasis.
|
14 |
Analyse von Bodenentgasungen in Sachsen mit KammersystemenOertel, Cornelius 06 March 2017 (has links) (PDF)
Böden sind Quelle und Senke für klimarelevante Spurengase (CO2, CH4 und N2O). Die freigesetzten Mengen sind mit denen aus Verbrennung fossiler Rohstoffe vergleichbar und können diese übersteigen, sodass Böden das Klima beeinflussen. Die wichtigsten Einflussgrößen der Bodenentgasung sind Vegetation, Bodenbearbeitung, Bodenfeuchte und Bodentemperatur. In dieser Arbeit wurden CO2-Flüsse für Acker-, Grünland- und Waldböden in Sachsen ganzjährig erfasst und eine Regionalisierung für die Landesfläche durchgeführt. Die Methodik umfasste flächendeckende Kurzeitfeldmessungen, punktuelle Langzeitfeldmessungen sowie gezielte Laborversuche. Zur Realisierung wurden robuste, transportable und präzise Kammersysteme zur manuellen und automatisierten Messung der Bodenentgasung im Freiland und Labor entwickelt. Für die Berechnung der Ökosystematmung aus den Messwerten konnte eine empirische Formel erstellt werden. Aus den Analyseergebnissen wurde raumzeitlich strukturiertes Kartenmaterial für die Ökosystematmung im Freistaat Sachsen in den verschiedenen Ökosystemen erstellt.
|
15 |
Effect of nutrient limitation on physiological and morphological plant traits related to growth and quality of tomatoMohammed, Kassem Ahmed Said 21 July 2013 (has links)
Ziel dieser Arbeit war es, das Verständnis über Reaktionen von Tomaten auf limitiertes Nährstoffangebot zu verbessern. In der Kontrollbehandlung (100% Biomassewachstum) wurden Pflanzen ohne Nährstofflimitierung kultiviert. Bei den Mangelvarianten wurde entweder K, Mg oder N kontinuierlich in Raten angeboten, die das Wachstum auf etwa 80% (leichter Mangel) oder 60% (starker Mangel) der Kontrolle reduzierten. Dieser Versuchsansatz ermöglichte es, pflanzliche Reaktionen auf eine gut definierte Intensität von Mangel an K, Mg und N zu vergleichen. Nährstofflimitierung veränderte die Biomasse- und Nährstoffallokation auf die verschiedenen Pflanzenorgane, wobei diese Veränderungen sich je nach Nährstoff unterschieden, aber nicht von der Intensität des Mangels abhängig waren. Die Wirkungen von Nährstofflimitierung auf morphologische Wurzel- und Sprosseigenschaften waren ebenfalls Nährstoff-spezifisch und nicht abhängig von der Intensität des Mangels. Die Wirkungen auf die Fruchtqualität, z.B. den Gehalt an Zuckern, Lycopin und Vitamin C waren Nährstoff-spezifisch und bei einigen Parametern auch von der Intensität des Mangels abhängig. Die Pflanzenreaktionen auf Mg-Mangel wurden in größerem Detail untersucht. In den ersten 6 Tagen nach Beginn der Limitierung nahmen die Mg-Konzentrationen in allen Organen stark ab, ohne Wirkung auf das Wachstum und die Photosynthese. Mangel erhöhte die Blattzuckergehalte, aber die Zuckerakkumulation stand in keiner Beziehung zur Photosyntheserate. Diese nahm erst ab, wenn die Blatt-Konzentrationen auf Werte unterhalb von 0,1 bis 0,2 mg Mg g-1 Frischmasse abgesunken waren. In Mg-Mangelpflanzen akkumulierten Zucker in den Sourceblättern sogar wenn das Source/Sink-Verhältnis in den Pflanzen durch Beschattung der basalen Blätter stark verringert wurde. Das stimmt mit der Annahme überein, dass Mg-Mangel aufgrund einer Inhibierung der Phloembeladung den Zuckerexport aus den Blättern verringert. / This thesis aims to increase our understanding about plant responses to K, Mg and N limitation and their relationship with fruit quality of tomato. In the control treatment (100% biomass growth), plants were grown at high nutrient concentration. In the nutrient-limitation treatments, either K or Mg or N was supplied continuously at rates, which reduced biomass growth to about 80% (mild deficiency) or 60% (severe deficiency) of the control. This experimental approach allowed comparing long-term plant responses to deficiency of K, Mg or N at well-defined intensities of nutrient limitation. Nutrient limitation was associated with changes of biomass and nutrient allocation among various plant organs, whereby these changes were nutrient specific (e.g., biomass allocation to leaves was increased in Mg deficient plants, and decreased in N deficient plants), but not much dependent on the intensity of nutrient limitation. Effects of nutrient limitation on root and shoot morphological traits were also nutrient-specific and independent on the intensity of deficiency. Effects of nutrient limitation on fruit quality, e.g, sugar, lycopene and ascorbic acid content, were also nutrient-specific, and for specific parameter dependent on the intensity of deficiency. Responses to Mg deficiency were studied in more detail. In the first 6 days after start of Mg limitation, Mg concentrations in all plant organs drastically decreased without any effects on growth and leaf photosynthetic rates. Mg-deficiency increased leaf sugar concentrations, but sugar accumulation was not directly related to leaf photosynthesis which only decreased after leaf Mg concentrations were below 0.10 to 0.20 mg Mg g-1 leaf fresh mass. In Mg-deficient plants, sugars accumulated in source leaves even when the source/sink ratio was strongly decreased by shading of basal leaves. This is in accordance with the suggestion that sugar export is reduced due to inhibition of phloem loading.
|
16 |
Analyse von Bodenentgasungen in Sachsen mit KammersystemenOertel, Cornelius 01 February 2017 (has links)
Böden sind Quelle und Senke für klimarelevante Spurengase (CO2, CH4 und N2O). Die freigesetzten Mengen sind mit denen aus Verbrennung fossiler Rohstoffe vergleichbar und können diese übersteigen, sodass Böden das Klima beeinflussen. Die wichtigsten Einflussgrößen der Bodenentgasung sind Vegetation, Bodenbearbeitung, Bodenfeuchte und Bodentemperatur. In dieser Arbeit wurden CO2-Flüsse für Acker-, Grünland- und Waldböden in Sachsen ganzjährig erfasst und eine Regionalisierung für die Landesfläche durchgeführt. Die Methodik umfasste flächendeckende Kurzeitfeldmessungen, punktuelle Langzeitfeldmessungen sowie gezielte Laborversuche. Zur Realisierung wurden robuste, transportable und präzise Kammersysteme zur manuellen und automatisierten Messung der Bodenentgasung im Freiland und Labor entwickelt. Für die Berechnung der Ökosystematmung aus den Messwerten konnte eine empirische Formel erstellt werden. Aus den Analyseergebnissen wurde raumzeitlich strukturiertes Kartenmaterial für die Ökosystematmung im Freistaat Sachsen in den verschiedenen Ökosystemen erstellt.:1 Einleitung
2 Aktueller Wissensstand
2.1 Bedeutung der Thematik
2.2 Treibhausgasemissionen
2.3 Entstehung von Treibhausgasen im Boden
2.4 Einflussgrößen auf die Bodenentgasung
2.5 Messmethoden
2.6 Methodenvergleich
3 Entwicklung von Probenahmesystemen
3.1 Manuelles System
3.2 Automatisierte Systeme
3.3 Berechnungsmethode
4 Versuchsdurchführung
4.1 Auswahl der Messstandorte
4.2 Untersuchungsgebiet
4.3 Meteorologische Daten
4.4 Experimentalarbeiten
4.5 Hochrechnung der Punktmessungen auf die Fläche
4.6 Fehlerbetrachtung
5 Ergebnisse und Diskussion
5.1 Labormessungen in der Klimakammer
5.2 Freilandmessungen – landwirtschaftliche Flächen 2012
5.3 Dauermessung mit SEACH-FG in Hilbersdorf
5.4 Pilotmessungen auf teilversiegelten Flächen und Stadtböden
5.5 Empirische Formel zur Ermittlung der Ökosystematmung
5.6 Hochrechnung der Bodenentgasung für Sachsen
5.7 Ökosystematmung der Bodengroßlandschaften
5.8 Ökosystematmung verschiedener Höhenlagen
6 Entwurf eines Monitoringkonzepts für Sachsen
7 Ausblick
8 Zusammenfassung
|
17 |
Periodic Fluctuation of Tidal Volumes Further Improves Variable Ventilation in Experimental Acute Respiratory Distress SyndromeGüldner, Andreas, Huhle, Robert, Beda, Alessandro, Kiss, Thomas, Bluth, Thomas, Rentzsch, Ines, Kerber, Sarah, Carvalho, Nadja C., Kasper, Michael, Pelosi, Paolo, Abreu, Marcelo G. de 14 December 2018 (has links)
In experimental acute respiratory distress syndrome (ARDS), random variation of tidal volumes (VT ) during volume controlled ventilation improves gas exchange and respiratory
system mechanics (so-called stochastic resonance hypothesis). It is unknown whether those positive effects may be further enhanced by periodic VT fluctuation at distinct
frequencies, also known as deterministic frequency resonance.We hypothesized that the positive effects of variable ventilation on lung functionmay be further amplified by periodic VT fluctuation at specific frequencies. In anesthetized and mechanically ventilated pigs, severe ARDS was induced by saline lung lavage and injurious VT (double-hit model).
Animals were then randomly assigned to 6 h of protective ventilation with one of four VT patterns: (1) random variation of VT (WN); (2) P04, main VT frequency of 0.13Hz; (3)
P10, main VT frequency of 0.05Hz; (4) VCV, conventional non-variable volume controlled ventilation. In groups with variable VT , the coefficient of variation was identical (30%).
We assessed lung mechanics and gas exchange, and determined lung histology and inflammation. Compared to VCV, WN, P04, and P10 resulted in lower respiratory system
elastance (63 ± 13 cm H2O/L vs. 50 ± 14 cm H2O/L, 48.4 ± 21 cm H2O/L, and 45.1 ± 5.9 cm H2O/L respectively, P < 0.05 all), but only P10 improved PaO2/FIO2 after 6 h
of ventilation (318 ± 96 vs. 445 ± 110mm Hg, P < 0.05). Cycle-by-cycle analysis of lung mechanics suggested intertidal recruitment/de-recruitment in P10. Lung histologic
damage and inflammation did not differ among groups. In this experimental model of severe ARDS, periodic VT fluctuation at a frequency of 0.05Hz improved oxygenation
during variable ventilation, suggesting that deterministic resonance adds further benefit to variable ventilation.
|
Page generated in 0.0432 seconds