• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chebyshev Subsets in Smooth Normed Linear Spaces

Svrcek, Frank J. 12 1900 (has links)
This paper is a study of the relation between smoothness of the norm on a normed linear space and the property that every Chebyshev subset is convex. Every normed linear space of finite dimension, having a smooth norm, has the property that every Chebyshev subset is convex. In the second chapter two properties of the norm, uniform Gateaux differentiability and uniform Frechet differentiability where the latter implies the former, are given and are shown to be equivalent to smoothness of the norm in spaces of finite dimension. In the third chapter it is shown that every reflexive normed linear space having a uniformly Gateaux differentiable norm has the property that every weakly closed Chebyshev subset, with non-empty weak interior that is norm-wise dense in the subset, is convex.
2

Gateaux Differentiable Points of Simple Type

Oh, Seung Jae 12 1900 (has links)
Every continuous convex function defined on a separable Banach space is Gateaux differentiable on a dense G^ subset of the space E [Mazur]. Suppose we are given a sequence (xn) that Is dense in E. Can we always find a Gateaux differentiable point x such that x = z^=^anxn.for some sequence (an) with infinitely many non-zero terms so that Ση∞=1||anxn|| < co ? According to this paper, such points are called of "simple type," and shown to be dense in E. Mazur's theorem follows directly from the result and Rybakov's theorem (A countably additive vector measure F: E -* X on a cr-field is absolutely continuous with respect to |x*F] for some x* e Xs) can be shown without deep measure theoretic Involvement.

Page generated in 0.0296 seconds