1 |
A Review of Gaussian Random MatricesAndersson, Kasper January 2020 (has links)
While many university students get introduced to the concept of statistics early in their education, random matrix theory (RMT) usually first arises (if at all) in graduate level classes. This thesis serves as a friendly introduction to RMT, which is the study of matrices with entries following some probability distribution. Fundamental results, such as Gaussian and Wishart ensembles, are introduced and a discussion of how their corresponding eigenvalues are distributed is presented. Two well-studied applications, namely neural networks and PCA, are discussed where we present how RMT can be applied / Medan många stöter på statistik och sannolikhetslära tidigt under sina universitetsstudier så är det sällan slumpmatristeori (RMT) dyker upp förän på forskarnivå. RMT handlar om att studera matriser där elementen följer någon sannolikhetsfördelning och den här uppsatsen presenterar den mest grundläggande teorin för slumpmatriser. Vi introducerar Gaussian ensembles, Wishart ensembles samt fördelningarna för dem tillhörande egenvärdena. Avslutningsvis så introducerar vi hur slumpmatriser kan användas i neruonnät och i PCA.
|
2 |
Asymptotics of beta-Hermite EnsemblesBerglund, Filip January 2020 (has links)
In this thesis we present results about some eigenvalue statistics of the beta-Hermite ensembles, both in the classical cases corresponding to beta = 1, 2, 4, that is the Gaussian orthogonal ensemble (consisting of real symmetric matrices), the Gaussian unitary ensemble (consisting of complex Hermitian matrices) and the Gaussian symplectic ensembles (consisting of quaternionic self-dual matrices) respectively. We also look at the less explored general beta-Hermite ensembles (consisting of real tridiagonal symmetric matrices). Specifically we look at the empirical distribution function and two different scalings of the largest eigenvalue. The results we present relating to these statistics are the convergence of the empirical distribution function to the semicircle law, the convergence of the scaled largest eigenvalue to the Tracy-Widom distributions, and with a different scaling, the convergence of the largest eigenvalue to 1. We also use simulations to illustrate these results. For the Gaussian unitary ensemble, we present an expression for its level density. To aid in understanding the Gaussian symplectic ensemble we present properties of the eigenvalues of quaternionic matrices. Finally, we prove a theorem about the symmetry of the order statistic of the eigenvalues of the beta-Hermite ensembles. / I denna kandidatuppsats presenterar vi resultat om några olika egenvärdens-statistikor från beta-Hermite ensemblerna, först i de klassiska fallen då beta = 1, 2, 4, det vill säga den gaussiska ortogonala ensemblen (bestående av reella symmetriska matriser), den gaussiska unitära ensemblen (bestående av komplexa hermitiska matriser) och den gaussiska symplektiska ensemblen (bestående av kvaternioniska själv-duala matriser). Vi tittar även på de mindre undersökta generella beta-Hermite ensemblerna (bestående av reella symmetriska tridiagonala matriser). Specifikt tittar vi på den empiriska fördelningsfunktionen och två olika normeringar av det största egenvärdet. De resultat vi presenterar för dessa statistikor är den empiriska fördelningsfunktionens konvergens mot halvcirkel-fördelningen, det normerade största egenvärdets konvergens mot Tracy-Widom fördelningen, och, med en annan normering, största egenvärdets konvergens mot 1. Vi illustrerar även dessa resultat med hjälp av simuleringar. För den gaussiska unitära ensemblen presenterar vi ett uttryck för dess nivåtäthet. För att underlätta förståelsen av den gaussiska symplektiska ensemblen presenterar vi egenskaper hos egenvärdena av kvaternioniska matriser. Slutligen bevisar vi en sats om symmetrin hos ordningsstatistikan av egenvärdena av beta-Hermite ensemblerna.
|
Page generated in 0.0778 seconds