• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 16
  • 14
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of transcription factor Pax6 in the development of the ventral lateral geniculate nucleus

Li, Ziwen January 2018 (has links)
The development of the diencephalon can be summarised as a process in which cells that initially appear similar give rise to a complex structure that contains a variety of cell groups called nuclei. It involves two stages: the early patterning of the diencephalic prosomeres and the later formation of the individual nuclei. It has been shown that transcription factors and morphogens regulate the first stage but their further effects on the second stage remain unclear. The ventral lateral geniculate nucleus (vLGN) is involved in the visual system and is shown to have complex origins from the thalamus, the zona limitans intrathalamica (ZLI) and the prethalamus. The transcription factor Pax6 is involved in the development of brain structures including the cortex, the diencephalon and the major axonal tracts in the forebrain by playing a multifaceted role in patterning, proliferation, differentiation, migration and axon guidance. It is known that Pax6 is essential in setting up the prosomeric boundaries in the developing diencephalon but its role in the formation of individual nuclei has not yet been explored. By using a conditional Pax6 knock-out mouse driven by Zic4Cre with a green fluorescent protein (GFP) reporter showing the Cre activity, the formation of the thalamic nuclei vLGN, dorsal lateral geniculate nucleus (dLGN) and VP (ventral posterior nuclei) was examined in postnatal day 0 (P0) Pax6+/+, Pax6fl/+ and Pax6fl/fl pups. Using this mouse model, I found an increase in nuclear volume at the rostral level and a global decrease in cell density in the P0 Pax6fl/fl vLGN, whereas in the dLGN an increase of GFP+ve cell proportion was observed. In Pax6fl/+, I found an increase in GFP+ve cell proportion in the caudal part of the vLGN and across the dLGN. No significant change was observed in the VP in either the Pax6fl/+ or the Pax6fl/fl. The defects in the vLGN and dLGN could be caused by: 1. disruption of the expression of patterning factors such as Shh and Nkx2.2; 2. cell proliferation defcts and abnormal apoptosis; 3. ocular developmental defects; 4. failure in cell sorting/migration; 5. cell fate change. During my PhD, I tested the first three theories and explored the fourth but was not able to pursue the last due to the time limit of the project. To test the hypothesized mechanisms underlying those defects seen in the vLGN and dLGN, I performed BrdU labelling to study the time origin of cells that contribute to these two nuclei and discovered that E11.5 and E12.5 are the main ages when these cells and the GFP+ve subpopulation are born. Then I carried out experiments to examine the cell proliferation and cell apoptosis in the thalamus (pTH-R, rostral part of the progenitor zone of the thalamus, and pTH-C, caudal part of the progenitor zone of the thalamus) and the prethalamus (Pth) from E11.5 to E13.5 and found: 1. the proliferation rate decreased in the pTH-R in Pax6fl/+ at E11.5; 2. the growth fraction decreased in both pTH-C and pTH-R in E12.5 Pax6fl/fl; 3. there is no change in cell proliferation in the GFP+ve subpopulation; 4. no abnormal apoptosis is observed in either the whole cell population or the GFP+ve subpopulation. Judging by the amplitude of the change in proliferation in the pTH-R and pTH-C at E11.5 and E12.5, it is unlikely that these changes alone are responsible for the phenotypes seen in P0 vLGN and dLGN. Then I examined the expression patterns of Shh and Nkx2.2 and the expansion of both was observed in Pax6fl/fl at both E12.5 and E13.5, which could explain the volume change of the vLGN but not the change in the proportion of GFP+ve subpopulation in both the vLGN and dLGN. Then I continued to examine if the ocular input from the retinal ganglionic cells are severely affected by the deletion of Pax6 and found no gross change in the conditional mutants, which rejected the ocular developmental defects theory. At the end of my PhD, I performed a BrdU short-term survival experiment and a brain slice culture combined with live imaging experiment to explore the possibility of abnormal cell migration causing the vLGN and dLGN phenotypes and found that the cells moving along the border of the thalamus and prethalamus move faster in the Pax6fl/fl than in the Pax6fl/+, but rather than moving directly toward the lateral surface of the diencephalon, they take a detour. These findings indicate that the deletion of Pax6 causes minor changes in the proliferation of E11.5 to E13.5 diencephalon and expansion of regional marker expression such as Shh and Nkx2.2, which could potenially affect the volume and change the proportion of GFP+ve cells in P0 vLGN and dLGN. Migration defects caused by Pax6 could also contribute to the phenotype observed in those two nuclei. Potential cell fate change caused by Pax6 deletion could be another factor that contributes to the defects in the conditional mutants. More work needs to be done to test the migration defect and cell fate change hypotheses in future.
2

The development, cytoarchitecture, and circuitry of the ventral lateral geniculate nucleus

Sabbagh, Ubadah 28 May 2021 (has links)
In the visual system, retinal axons convey visual information from the outside world to dozens of distinct retinorecipient brain regions. In rodents, two major areas that are densely innervated by this retinal input are the dorsal lateral geniculate nucleus (dLGN) and ventral lateral geniculate nucleus (vLGN), both of which reside in the thalamus. The dLGN is well-studied and known to be important for classical image‐forming vision. The vLGN, on the other hand, is associated with non‐image‐forming vision and its neurochemistry, cytoarchitecture, and retinothalamic connectivity all remain unresolved, raising fundamental questions of its role within the visual system. Here, we sought to shed light on these important questions by studying the cellular and extracellular landscape of the vLGN and map its connectivity with the retina. Using bulk RNA sequencing and proteomics, we identified extracellular matrix proteins that form two molecularly distinct types of perineuronal nets in two major laminae of vLGN: the retinorecipient external vLGN (vLGNe) and the non‐retinorecipient internal vLGN. Using in situ hybridization, immunohistochemistry, electrophysiology, and genetic reporter lines, we found that vLGNe and vLGNi are also composed of diverse subtypes of neurons. In vLGNe, we discovered at least six transcriptionally distinct subtypes of inhibitory neurons that are distributed into distinct adjacent sublaminae. Using trans‐synaptic viral tracing and ex vivo electrophysiology, we found that cells in each these sublaminae receive direct inputs from retina. Lastly, by genetically removing visual input, we found that the organization of these sublaminae is dramatically disrupted, suggesting a crucial role for sensory input in the cytoarchitectural maintenance of the vLGN. Taken together, these results not only identify novel subtypes of vLGN cells, but they also point to new means of organizing visual information into parallel pathways – by anatomically creating distinct sensory channels. This subtype-specific organization may be key to understanding how the vLGN receives, processes, and transmits light‐derived signals in the subcortical visual system. / Doctor of Philosophy / As you look around, even as you read this abstract, your retinas are constantly taking in light, converting it into neural signals, and parsing it into different types of visual features. Those light-derived signals are then transmitted from the eye to dozens of brain areas through the optic nerve. Each of these brain areas is important for specialized visual functions. One of the most major visual areas is a region in the thalamus known as the ventral lateral geniculate nucleus (vLGN). Unlike the type of vision we typically think of which involves "seeing" an image, the vLGN primarily receives non-image-forming visual information from the eye which is important for a whole host of light-derived behaviors that do not involve image forming vision. These non-image-forming functions can impact things ranging from jet lag to eye movement to mood disorders and depression. Yet, despite the dense amount of visual information it receives, and the connections it has with many other brain regions, the vLGN has been largely understudied over the years, leaving many fundamental questions unanswered. Here, we unmasked the molecular and cellular landscape of the vLGN and discovered a rich and diverse set of neuronal cell types in this region. Further, by simultaneously labeling these neuronal types, we found that they stratify into their own layers, revealing a striking level of organization which suggests that the vLGN organizes visual information into parallel channels. These discoveries are important because understanding the composition and structure of the vLGN paves the way to understanding how it receives, processes, and transmits sensory signals in the visual system.
3

Mechanisms underlying retinogeniculate synapse formation in mouse visual thalamus

Monavarfeshani, Aboozar 22 January 2018 (has links)
Retinogeniculate (RG) synapses connect retinal ganglion cells to the thalamic relay cells of the dorsal lateral geniculate nucleus (dLGN). They are critical for regulating the flow of visual information from retina to primary visual cortex (V1). RG synapses in dLGN are uniquely larger and stronger than their counterparts in other retinorecipient regions. Moreover, in dLGN, RG synapses can be classified into two groups: simple RG synapses, which contain glia-encapsulated single RTs synapsing onto relay cell dendrites, and complex RG synapses, which contain numerous RTs that converge onto the shared regions of relay cell dendrites. To identify target-derived molecules that direct the transformation of RTs into unique RG synapses in dLGN, I used RNAseq to obtain the whole transcriptome of dLGN and its adjacent retinorecipient nucleus, vLGN, at different time points during RG synapses development. Leucine-Rich Repeat Transmembrane Neuronal 1 (LRRTM1), a synaptogenic adhesion molecule, was the candidate I selected based on its expression pattern. Here, I discovered that LRRTM1 regulates the development of complex RG synapses. Mice lacking LRRTM1 (lrrtm1-/-) not only show a significant reduction in the number of complex RG synapses but they exhibit abnormal visual behaviors. This work reveals, for the first time, a high level of retinal convergence onto dLGN relay cells in thalamus and the functional significance of this convergence for vision. / Ph. D. / Our relationship with the environment is heavily reliant on vision, an intricately wired sensory system, much like a circuit. This circuit begins at the eyes, with the retina, and spreads to different visual centers in the brain. Retinal ganglion cells (RGCs) send their wires, called axons, carrying information about the visual world to over 40 different regions in the brain. A major target of these axons is the dorsal lateral geniculate nucleus (dLGN), a region critical to our ability to perceive the visual world. The sites where RGCs connect to the dLGN cells are called retinogeniculate (RG) synapses, and my studies focused on understanding how these RG synapses develop and how they function. I am the first to discover the fact that more than a dozen distinct RGC axons cluster within the same neighborhood of one shared target cell in the dLGN. Unique to the dLGN, these clusters, termed complex RG synapses, are not seen in any other RGC target regions in the brain. Moreover, I demonstrated a new molecular mechanism that forms these synapses by identifying a protein called LRRTM1, as a critical molecule required for the formation of these complex RG synapses in the dLGN. By studying the visual behavior of mutant mice lacking LRRTM1, I demonstrated that complex RG synapses are important for performing complex visual tasks. The discoveries detailed within this dissertation add to current efforts to restore vision in patients suffering from severe visual impairments, via regenerative therapies, by furthering our understanding of how neural wires connect in the visual circuit to reveal everything we will ever know about the visual world.
4

Determining TrkB intracellular signalling pathways required for specific aspects of gustatory development

Koudelka, Juraj January 2013 (has links)
Neurotrophins BDNF and NT4 influence the development of the rodent gustatory system. Despite binding to the same receptor, TrkB, they have different roles. BDNF is chemo-attractive for gustatory neurons and regulates gustatory neuron targeting and number during development. NT4 regulates gustatory neuron number earlier in development than BDNF, but it is not chemo-attractive and does not regulate gustatory neuron targeting. To elucidate the mechanisms that regulate these processes we have examined which TrkB intracellular signalling pathways are required for specific aspects of gustatory development by studying the effect of specific point mutations in TrkB docking sites. We found that the TrkB/Shc docking site is involved in regulating the survival of geniculate ganglion neurons as a point mutation in this adaptor site (TrkbS/S) caused large losses of these neurons as early as E12.5. These losses were exacerbated throughout development until after birth. A point mutation in the TrkB/PLCγ (TrkbP/P) docking site did not cause loss of geniculate ganglion neurons at any point during development. Animals with a point mutation in both docking sites (TrkbD/D) caused a further decrease in neuron numbers compared to animals with a mutation in only one of the docking sites, similarly to what has previously been shown in Trkb null animals. We concluded that the TrkB/Shc docking site is crucial for determining the survival of geniculate ganglion neurons during mouse gustatory development, while the TrkB/PLCγ docking site does not affect the neuronal survival directly and likely plays a role in maintenance of these neurons. Examining the targeting of geniculate ganglion afferents into the tongue revealed large deficits in innervated neural bud and taste bud numbers in TrkbS/S animals both before and after birth. This was concluded to be reflecting the lack of neuronal survival in this ganglion, a result that was mirrored in TrkbD/D animals. TrkbP/P animals, on the other hand, exhibited a developmental delay in innervation. This was indicated by a low amount of innervated neural buds following the initial innervation period, which was compensated for by a large increase in the number of innervated taste buds by birth. By adulthood, the numbers of taste buds present on the tongues of TrkbP/P animals reached normal numbers compared to control animals. This suggested that the TrkB/PLCγ docking site is involved primarily in innervation. Finally, we examined the morphology of taste buds in newly born and adult animals. We found that the low amount of geniculate ganglion afferents innervating the tongue in TrkbS/S and TrkbD/D animals caused a decrease in size of taste buds. This effect was seen to be partially rescued by adulthood in TrkbS/S animals but not in TrkbD/D animals due to lack of viability. The morphology of taste buds was unaffected in TrkbP/P animals until adulthood, at which point the size of the taste buds was increased. These results are in agreement with previous findings showing dependency of taste bud morphology on the amount of innervation. Overall, our findings show a differential role of TrkB adaptor sites in gustatory development. Despite activated by the same ligands, the docking sites on this receptor are able to exert different influence on signalling pathways downstream of TrkB affecting neuronal survival, targeting and morphology of taste buds.
5

Lemniscal and non-lemniscal responses to ongoing noises and transient probes in the auditory thalamus

Martin, Eugene Matthew. January 2005 (has links)
Thesis (Ph.D.)--University of Florida, 2005. / Typescript. Title from title page of source document. Document formatted into pages; contains 119 pages. Includes Vita. Includes bibliographical references.
6

Unique Response Properties and GABA<sub>A</sub> Receptor Function in Medial Geniculate Body Neurons of Young and Aged Fischer Brown Norway Rats

Richardson, Ben David 01 December 2012 (has links)
The auditory thalamus or medial geniculate body (MGB) is the final brain structure for acoustic information processing prior to, and functioning in reciprocity with, auditory cortex. MGB neurons process and gate aspects of acoustic stimuli, functions which depend partly on GABAergic inhibition. To characterize these properties, the inhibitory neurotransmitters involved and how they may be altered in the aged MGB, specific aims sought to: 1) determine the presence of functional high affinity GABAA receptors (GABAARs) in the MGB, 2) determine whether GABAAR function is altered with age and 3) determine to what degree MGB neurons of awake young and aged rats display stimulus-specific adaptation (SSA). Inhibitory neurotransmission is essential for accurate coding of acoustic information in the central auditory system, but appears disrupted in the aged. The present study required the development of a slice preparation that permitted whole cell recordings from juvenile, young adult and aged rat MGB neurons. The presence of high affinity GABAARs and the impact of aging on synaptic and high affinity GABAAR function were examined. Low concentrations of gaboxadol (GABAAR agonist) activated a gabazine-sensitive (GABAAR antagonist) tonic current, providing support for the expression of functional high affinity GABAARs in the MGB. Activation of high affinity GABAARs expressed by MGB neurons decreased input resistance, hyperpolarized resting membrane potential, reduced evoked firing rates and induced a transition from tonic to burst firing mode. In aged MGB neurons there was a significant 50.4% reduction in GABAAR-mediated tonic Cl- current. Synaptic GABAAR inhibition appeared differentially affected by age in lemniscal and non-lemniscal auditory thalamus although gramicidin perforated patch-clamp recordings indicated neuronal Cl- homeostasis was unaltered with age. Anesthetized rodent MGB single units show SSA, during which the firing rate in response to repetitive stimuli decreases/adapts over time but low probability stimuli (i.e. novel) continue to elicit robust responses. To examine the presence of SSA in the MGB of awake rats, a multichannel single unit recording preparation was implemented. This approach involved implanting young and aged rats with an array of four individually-advanceable tetrodes in order to evaluate SSA by recording responses to a frequency oddball paradigm and a random/non-random frequency range paradigm. Single units in the MGB of awake FBN rats were found to display SSA, which was stronger in the non-lemniscal than lemniscal regions of the MGB. SSA was most dramatic at lower intensities where 27 of 57 (47%) young adult single units and 28 of 54 (52%) aged single units displayed SSA. However, there were no significant age-related differences in average magnitude or time course of SSA of MGB single units studied. Data from aims 1 and 2 provide the initial description of functional high affinity GABAARs in the rodent MGB and the plasticity of these receptors with age. These data suggest that GABAAR subtype-selective agonists or modulators could be used to augment MGB inhibitory neurotransmission, possibly improving speech understanding for a subset of elderly individuals. Findings from aim 3 were the first to show that SSA by MGB neurons is not dependent on arousal level nor on the anesthetized state, but is a common response in the MGB of awake rats. SSA did not appear to be overtly altered in the aged auditory thalamus of awake rats.
7

Ordering geniculate input into primary visual cortex

Krug, Kristine January 1997 (has links)
Precise point-to-point connectivity is the basis of ordered maps of the visual field in the brain. One point in the visual field is represented at one locus in the dLGN and one locus in primary visual cortex. A fundamental problem in the development of most sensory systems is the creation of the topographic projections which underlie these maps. Mechanisms ranging from ordered ingrowth of fibres, through chemical guidance of axons to sculpting of the map from an early exuberant input have been proposed. However, we know little about how ordered maps are created beyond the first relay. What we do know is that a topological mismatch requires the exchange of neighbours in the geniculo-cortical projection and that manipulating the input to the primary relay can affect the geniculo-cortical topography. Taking advantage of the immaturity of the newborn hamster’s visual system, I studied the generation of an ordered map in primary visual cortex during the time of target innervation in normal and manipulated animals. I also investigated the patterning of neuronal activity prior to natural eye-opening. Paired injections of retrograde fluorescent tracers into visual cortex reveal that geniculate fibres are highly disordered at the time of invasion of the cortical plate. Topography in the geniculo-cortical projection emerges out of an unordered projection to area 17 in the first postnatal week. Furthermore, I show that manipulating the peripheral input can alter the topographic map which arises out of the early scatter. Removal of one eye at birth appears to slow the process of geniculo-cortical map formation ipsilateral to the remaining eye and at the end of the second postnatal week, a double projection between thalamus and cortex has formed. If retinal activity is blocked during this time, this double projection does not emerge. The results implicate retinal activity as the signal that induces the development of a different topographic order in the geniculo-cortical projection. It is generally believed that visual experience can influence development only after eye-opening. However, the final part of my thesis shows that neurons in the developing visual cortex of the ferret can not only be visually driven at least 10 days before natural eye-opening, but are also selective for differently oriented gratings presented <i>through the closed eye-lid</i>. Thus, visually-driven neuronal activity could influence development much earlier than previously assumed in many developmental studies.
8

Systematics of the non-geniculate coralline red algae from the South African south coast

Van der Merwe, Elizabeth January 2015 (has links)
Philosophiae Doctor - PhD / The aim of this study was to document the intertidal and shallow subtidal species of non-geniculate coralline red algae from the South Africa south coast. The main emphasis of the study are encompassed in four research chapters and one concluding chapter focusing on: 1) the documentation of the non-geniculate coralline red algae occurring along the South Africa south coast; 2) revisiting the Leptophytum-Phymatolithon complex in order to resolve the taxonomic status of species previously ascribed to the genus Leptophytum from South African; 3) starting to prepare modern monographic accounts of the higher taxa; and 4) the production of updated keys to all the currently recognised taxa of non-geniculate coralline algae for South Africa. Although nowhere near complete, here we present our findings and report on the current biodiversity status of the non-geniculate coralline red algae after a further four years of extensive sampling.
9

DEVELOPMENT OF THE AUDITORY THALAMUS IN THE FERRET

HOWARD, JENNIFER DIXON 24 September 2002 (has links)
No description available.
10

Influence of retinal states on the development and maintenance of retinofugal projections

Morhardt, Duncan 01 January 2010 (has links)
Vision provides a critical interface with the physical world. This work examines visual development and vision loss in mice to glean the influence of the retinal state on visual connections. I first assessed the impact of retinal activity on the eye-specific segregation of retinal afferents in the lateral geniculate nucleus (LGN) of young Gβ5 -/- mice. Gβ5 is the fifth member of the β subfamily of heterotrimeric G proteins. Gβ5 binds and stabilizes the R7 family of regulators of G-protein signaling (RGS), which accelerate Gi/o GTP hydrolysis. Gβ5 -/- mice, which lack R7RGS activity, have malformed synapses in the outer plexiform layer (OPL) and impaired OPL transmission. Altered spontaneous retinal activity in Gβ5-/- mice at P7, P12, P14, and P28 correlates with impaired eye-specific segregation of retinal afferents in the LGN at corresponding timepoints. However, Gβ5-/- mice exhibit a normal transition from cholinergic to glutamatergic drive that corresponds with a temporary recovery of refinement at P10. Thus the abnormal-normal-abnormal pattern of activity in the retina is coupled with abnormal-normal-abnormal segregation. This activity-segregation profile suggests activity may instruct early retinogeniculate development. nob mice, which also exhibit impaired OPL transmission, have aberrant retinal waves that align with loss of segregation. nobxGβ5-/- mice have similar levels of segregation as Gβ5-/- at P21, but activity only similar P14 nobxGβ5-/- and Gβ5-/- RGCs. This suggests that the critical period of eye-specific segregation closes shortly after P14 and that R7RGS activity is critically important to postnatal RGCs. Next, I investigated the aged visual system via the retinofugal projections of mice with retinal remodeling after photoreceptor degeneration (PD). ΔCT mice, with mild remodeling, and TG9N mice, with aggressive remodeling, retain gross anatomical and physiological connectivity in the presence of attenuated visual activity compounded by organic remodeling. However, the magnitude of pupillary light responses in PD mice was diminished. Reduced melanopsin signal in the retina, not downstream anomalies, explains this functional deficiency. These observations suggest that changes to eye-specific segregation are limited once projections are established, regardless of retinal activity or remodeling. These observations bode well for future retina-based treatments of vision loss.

Page generated in 0.0743 seconds