• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 34
  • 12
  • 10
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 352
  • 352
  • 262
  • 123
  • 102
  • 72
  • 67
  • 67
  • 62
  • 62
  • 53
  • 45
  • 45
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

DYRK1A-RELATED TRABECULAR DEFECTS IN MALE TS65DN MICE EMERGE DURING A CRITICAL DEVELOPMENTAL WINDOW

Jonathan Mark LaCombe (11022450) 06 August 2021 (has links)
<p> Down syndrome (DS) is a complex genetic disorder caused by the triplication of human chromosome 21 (Hsa21). The presence of an extra copy of an entire chromosome greatly disrupts the copy number and expression of over 350 protein coding genes. This gene dosage imbalance has far-reaching effects on normal development and aging, leading to cognitive and skeletal defects that emerge earlier in life than the general population.</p> <p> The present study begins by characterizing skeletal development in young male Ts65Dn mice to test the hypothesis that skeletal defects in male Ts65Dn mice are developmental in nature.Femurs from young mice ranging from postnatal day 12- to 42-days of age (P12-42) were measured and analyzed by microcomputed tomography (μCT). Cortical defects were present generally throughout development, but trabecular defects emerged at P30 and persisted until P42. </p> <p> The gene <i>Dual-specificity tyrosine-regulated kinase 1a </i>(<i>Dyrk1a</i>) is triplicated in both DS and in Ts65Dn mice and has been implicated as a putative cause of both cognitive and skeletal defects. To test the hypothesis that trisomic <i>Dyrk1a</i> is related to the emergence of trabecular defects at P30, expression of <i>Dyrk1a</i> in the femurs of male Ts65Dn mice was quantified by qPCR. Expression was shown to fluctuate throughout development and overexpression generally aligned with the emergence of trabecular defects at P30.</p> <p> The growth rate in trabecular measures between male Ts65Dn and euploid littermates was similar between P30 and P42, suggesting a closer look into cellular mechanisms at P42. Assessment of proliferation of BMSCs, differentiation and activity of osteoblasts showed no significant differences between Ts65Dn and euploid cellular activity, suggesting that the cellular microenvironment has a greater influence on cellular activity than genetic background.</p> These data led to the hypothesis that reduction of <i>Dyrk1a</i> gene expression and pharmacological inhibition of DYRK1A could be executed during a critical period to prevent the emergence of trabecular defects at P30. To tests this hypothesis, doxycycline-induced cre-lox recombination to reduce <i>Dyrk1a</i> gene copy number or the DYRK1A inhibitor CX-4945 began at P21. The results of both genetic and pharmacological interventions suggest that trisomic <i>Dyrk1a</i> does not influence the emergence of trabecular defects up to P30. Instead, data suggest that the critical window for the rescue of trabecular defects lies between P30 and P42.
342

The International Consortium on Lithium Genetics (ConLiGen): An Initiative by the NIMH and IGSLI to Study the Genetic Basis of Response to Lithium Treatment

Schulze, Thomas G., Alda, Martin, Adli, Mazda, Akula, Nirmala, Ardau, Raffaella, Bui, Elise T., Chillotti, Caterina, Cichon, Sven, Czerski, Piotr, Del Zompo, Maria, Detera-Wadleigh, Sevilla D., Grof, Paul, Gruber, Oliver, Hashimoto, Ryota, Hauser, Joanna, Hoban, Rebecca, Iwata, Nakao, Kassem, Layla, Kato, Tadafumi, Kittel-Schneider, Sarah, Kliwicki, Sebastian, Kelsoe, John R., Kusumi, Ichiro, Laje, Gonzalo, Leckband, Susan G., Manchia, Mirko, MacQueen, Glenda, Masui, Takuya, Ozaki, Norio, Perlis, Roy H., Pfennig, Andrea, Piccardi, Paola, Richardson, Sara, Rouleau, Guy, Reif, Andreas, Rybakowski, Janusz K., Sasse, Johanna, Schumacher, Johannes, Severino, Giovanni, Smoller, Jordan W., Squassina, Alessio, Turecki, Gustavo, Young, L. Trevor, Yoshikawa, Takeo, Bauer, Michael, McMahon, Francis J. January 2010 (has links)
For more than half a decade, lithium has been successfully used to treat bipolar disorder. Worldwide, it is considered the first-line mood stabilizer. Apart from its proven antimanic and prophylactic effects, considerable evidence also suggests an antisuicidal effect in affective disorders. Lithium is also effectively used to augment antidepressant drugs in the treatment of refractory major depressive episodes and prevent relapses in recurrent unipolar depression. In contrast to many psychiatric drugs, lithium has outlasted various pharmacotherapeutic ‘fashions’, and remains an indispensable element in contemporary psychopharmacology. Nevertheless, data from pharmacogenetic studies of lithium are comparatively sparse, and these studies are generally characterized by small sample sizes and varying definitions of response. Here, we present an international effort to elucidate the genetic underpinnings of lithium response in bipolar disorder. Following an initiative by the International Group for the Study of Lithium-Treated Patients (www.IGSLI.org) and the Unit on the Genetic Basis of Mood and Anxiety Disorders at the National Institute of Mental Health,lithium researchers from around the world have formed the Consortium on Lithium Genetics (www.ConLiGen.org) to establish the largest sample to date for genome-wide studies of lithium response in bipolar disorder, currently comprising more than 1,200 patients characterized for response to lithium treatment. A stringent phenotype definition of response is one of the hallmarks of this collaboration. ConLiGen invites all lithium researchers to join its efforts. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
343

Identification des déterminants génétiques de la tolérance à la sècheresse chez le maïs par l'étude de l'évolution de l'indice foliaire vert au cours du cycle de la plante et le développement d'une méthode de phénotypage innovant / Identification of the genetic determinants of maize drought tolerance by studying the evolution of Green Leaf Area Index over the plant cycle and the development of an innovative method of phenotyping

Blancon, Justin 28 June 2019 (has links)
D’ici la fin du siècle, les prévisions climatiques prévoient une diminution de la quantité et de la régularité des pluies s’accompagnant d’une augmentation du risque de sècheresse en Europe et dans de nombreuses régions du monde. La création de nouvelles variétés de maïs plus tolérantes au stress hydrique est un levier indispensable pour faire face à ces contraintes futures. L’objectif principal de cette thèse est d’approfondir les connaissances des déterminismes génétiques de la tolérance à la sècheresse chez le maïs. Pour ce faire, il est proposé de disséquer ce caractère complexe en caractères physiologiques sous-jacents dont le déterminisme génétique est a priori plus simple. L’évolution de l’indice foliaire vert (GLAI : Green Leaf Area Index) au cours du cycle de la plante, par son rôle majeur dans l’interception lumineuse, la transpiration et les échanges de CO2, est un caractère secondaire prometteur pour identifier les bases génétiques de la tolérance à la sècheresse et en améliorer la compréhension. Au cours de cette thèse, nous avons développé une méthode de phénotypage haut débit permettant d’estimer la cinétique du GLAI au champ. Cette méthode combine la caractérisation multispectrale par drone et l’utilisation d’un modèle physiologique simple de GLAI. Elle permet d’estimer la cinétique du GLAI de manière continue sur l’ensemble du cycle de la plante avec une bonne précision, tout en divisant par vingt le temps nécessaire au phénotypage. Nous avons utilisé cette méthode lors de deux essais en conditions optimales et deux essais en conditions de stress hydrique pour mesurer l’évolution du GLAI au sein d’un panel de 324 lignées issues d’une population MAGIC (Multi-parent Advanced Generation Inter-Cross). Les cinétiques estimées présentent une forte héritabilité et expliquent une part significative du rendement en conditions optimales et stressées. Afin d’identifier les bases génétiques de la cinétique du GLAI, trois approches de génétique d’association longitudinales ont été comparées : une approche univariée en deux étapes, une approche multivariée en deux étapes et une approche de régression aléatoire en une étape. Ces trois approches, couplées à la forte densité des données de génotypage disponibles (près de 8 millions de marqueurs), ont permis de révéler de nombreux QTL (Quantitative Trait Loci), dont certains colocalisent avec des QTL de rendement. Enfin, nous avons démontré que les QTL de GLAI identifiés lors de cette étude pouvaient expliquer près de 20 % de la variabilité du rendement observée dans un large réseau d’expérimentations sous stress hydrique. Ce travail fournit des méthodes qui permettront une meilleure caractérisation et une meilleure compréhension des déterminismes génétiques de la cinétique du GLAI, un caractère jusqu’ici inaccessible pour les populations de taille importante. Ce caractère présente toutes les caractéristiques requises pour améliorer l’efficacité des programmes de sélection en conditions de stress hydrique. / By the end of the century, climate forecasts predict a decrease in the quantity and regularity of rainfall with an increasing risk of drought in Europe and in many regions of the world. Breeding for more tolerant varieties will be an essential lever to face these future constraints. The main objective of this work is to characterize the genetic determinisms of drought tolerance in maize. To this aim, it is proposed to dissect this complex trait into underlying physiological traits whose genetic determinism is supposed to be simpler. Green Leaf Area Index (GLAI) dynamics throughout the plant cycle, through its major role in light interception, transpiration and CO2 exchange, is a promising secondary trait to identify and better understand the genetic basis of drought tolerance. During this thesis, we developed a high-throughput method for phenotyping maize GLAI dynamics in the field. This method combines UAV multispectral imagery and a simple GLAI model. It makes possible the estimation of the dynamics of GLAI continuously throughout the whole plant cycle with good accuracy, while reducing the phenotyping time twentyfold. This method was used in two well-watered and two water-deficient trials to characterize the GLAI dynamics of 324 lines from a MAGIC population (Multi-parent Advanced Generation Inter-Cross). The estimated dynamics have a high heritability and explain a significant part of grain yield under well-watered and water-stressed conditions. To characterize the genetic basis of GLAI dynamics, three longitudinal GWAS (Genome Wide Association Study) approaches were compared: a univariate two-step approach, a multivariate two-step approach and a random regression one-step approach. These three approaches, combined with the high density of available genotyping data (nearly 8 million markers), have revealed many QTL (Quantitative Trait Loci), some of which were co-localized with yield QTL. Finally, we demonstrated that the GLAI QTL identified in this study could explain nearly 20 % of the grain yield variability observed in a large network of water-stressed experiments. This work provides methods that will enable a better characterization and understanding of the genetic determinisms of GLAI dynamics, a trait that was out of reach in large populations until now. This trait presents all the characteristics required to improve the effectiveness of selection programs under water stress conditions.
344

Cluster-Based Analysis Of Retinitis Pigmentosa Candidate Modifiers Using Drosophila Eye Size And Gene Expression Data

James Michael Amstutz (10725786) 01 June 2021 (has links)
<p>The goal of this thesis is to algorithmically identify candidate modifiers for <i>retinitis pigmentosa</i> (RP) to help improve therapy and predictions for this genetic disorder that may lead to a complete loss of vision. A current research by (Chow et al., 2016) focused on the genetic contributors to RP by trying to recognize a correlation between genetic modifiers and phenotypic variation in female <i>Drosophila melanogaster</i>, or fruit flies. In comparison to the genome-wide association analysis carried out in Chow et al.’s research, this study proposes using a K-Means clustering algorithm on RNA expression data to better understand which genes best exhibit characteristics of the RP degenerative model. Validating this algorithm’s effectiveness in identifying suspected genes takes priority over their classification.</p><p>This study investigates the linear relationship between <i>Drosophila </i>eye size and genetic expression to gather statistically significant, strongly correlated genes from the clusters with abnormally high or low eye sizes. The clustering algorithm is implemented in the R scripting language, and supplemental information details the steps of this computational process. Running the mean eye size and genetic expression data of 18,140 female <i>Drosophila</i> genes and 171 strains through the proposed algorithm in its four variations helped identify 140 suspected candidate modifiers for retinal degeneration. Although none of the top candidate genes found in this study matched Chow’s candidates, they were all statistically significant and strongly correlated, with several showing links to RP. These results may continue to improve as more of the 140 suspected genes are annotated using identical or comparative approaches.</p>
345

Cardiotoxic effects of polycyclic aromatic hydrocarbons and abiotic stressors in early life stage estuarine teleosts

Elizabeth B Allmon (10724124) 29 April 2021 (has links)
<div>Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. The location and timing of the Deepwater Horizon surface slick coincided with the spawning seasons of many important pelagic and estuarine fish species. As such, there has been particular emphasis placed on the effects of PAHs on sensitive life history stages in fish, such as the embryonic and larval periods. Additionally, the spill occurred throughout the spring and summer months which, in estuaries, are marked by regular fluctuations in abiotic environmental factors such as dissolved oxygen, salinity, and temperature. Until recently, there has been little work done to elucidate the combined effects that PAHs from oil spills and adverse environmental conditions (hypoxia, increased salinity, and elevated temperatures).</div><div>Work presented in this dissertation uses next generation sequencing technology (RNA Seq) to determine differential gene expression in larval estuarine teleosts following exposure to adverse environmental conditions and PAHs. Downstream canonical pathway and toxicological function analysis were then applied to the identified differentially expressed genes (DEGs) to predict cardiotoxic responses at the organismal level. To verify the predicted responses, a phenotypic anchoring study was conducted and identified a cardiotoxic phenotype (pericardial edema) and reduced cardiac output in embryos exposed to oil. Finally, the mechano-genetic interplay governing the morphological development of the teleost heart was investigated and correlations between developmental gene expression and blood flow forces within the cardiovascular system were identified.</div>
346

Pathways to dementia: genetic predictors of cognitive and brain imaging endophenotypes in Alzheimer's disease

Ramanan, Vijay K 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer's disease (AD) is a national priority, with nearly six million Americans affected at an annual cost of $200 billion and no available cure. A better understanding of the mechanisms underlying AD is crucial to combat its high and rising incidence and burdens. Most cases of AD are thought to have a complex etiology with numerous genetic and environmental factors influencing susceptibility. Recent genome-wide association studies (GWAS) have confirmed roles for several hypothesized genes and have discovered novel loci associated with disease risk. However, most GWAS-implicated genetic variants have displayed modest individual effects on disease risk and together leave substantial heritability and pathophysiology unexplained. As a result, new paradigms focusing on biological pathways have emerged, drawing on the hypothesis that complex diseases may be influenced by collective effects of multiple variants – of a variety of effect sizes, directions, and frequencies – within key biological pathways. A variety of tools have been developed for pathway-based statistical analysis of GWAS data, but consensus approaches have not been systematically determined. We critically review strategies for genetic pathway analysis, synthesizing extant concepts and methodologies to guide application and future development. We then apply pathway-based approaches to complement GWAS of key AD-related endophenotypes, focusing on two early, hallmark features of disease, episodic memory impairment and brain deposition of amyloid-β. Using GWAS and pathway analysis, we confirmed the association of APOE (apolipoprotein E) and discovered additional genetic modulators of memory functioning and amyloid-β deposition in AD, including pathways related to long-term potentiation, cell adhesion, inflammation, and NOTCH signaling. We also identified genetic associations to amyloid-β deposition that have classically been understood to mediate learning and memory, including the BCHE gene and signaling through the epidermal growth factor receptor. These findings validate the use of pathway analysis in complex diseases and illuminate novel genetic mechanisms of AD, including several pathways at the intersection of disease-related pathology and cognitive decline which represent targets for future studies. The complexity of the AD genetic architecture also suggests that biomarker and treatment strategies may require simultaneous targeting of multiple pathways to effectively combat disease onset and progression.
347

DEVELOPMENT OF TOOLS TO UNDERSTAND THE ROLE OF THE PBAF CHROMATIN REMODELER IN PROSTATE CANCER

Sandra Carolina Ordonez Rubiano (18115162) 06 March 2024 (has links)
<p dir="ltr">The BRG1/BRM-associated factor (BAF) complexes, also called SWI/SNF, are multi-subunit chromatin remodelers that regulate chromatin compaction in an ATP-dependent manner. In the past decade, BAF complexes have been under the spotlight in cancer research, especially after proteomic analyses revealed the genes encoding the subunits are amongst the most frequently mutated genes in cancer. The present dissertation focuses on prostate cancer (PCa), a disease in which the role of the BAF subunits is increasingly being explored but is yet to be defined as a potential therapeutic target. According to the GLOBOCAN report, PCa is the second most frequent cancer in males worldwide. Since most of the variants of PCa rely on the androgen receptor (AR) axis, surgical or chemical castration and androgen deprivation therapy (ADT) are the main treatment strategies for PCa patients. Even though these therapeutic approaches prolong survival, reduce tumor burden, and relieve symptoms, PCa patients eventually relapse and develop castration resistant PCa (CRPC). At present, the mechanisms underlying ADT resistance are not fully understood, current efforts focus on finding new targets for PCa treatment.</p><p dir="ltr">In the projects included in this dissertation we explored the function of the PBAF complex, a BAF subtype, in a variety of models of PCa and its potential as a therapeutic target by inhibiting or depleting its different subunits. To do so we (i) developed the first inhibitors for BRD7 (a subunit unique to PBAF) and (ii) established cell-based assays in multiple PCa cell lines to study BRD7 and other PBAF unique subunits.</p><p dir="ltr">Bromodomain-containing proteins are readers of acetylated lysine and play important roles in cancer. Bromodomain-containing protein 7 (BRD7) has been implicated in multiple malignancies; however, there are no selective chemical probes to study its function in disease. Using crystal structures of BRD7 and BRD9 bromodomains (BDs) bound to BRD9-selective ligands, we identified a binding pocket exclusive to BRD7. We synthesized a series of ligands designed to occupy this binding region and identified two inhibitors with increased selectivity towards BRD7, 1-78 and 2-77, which bind with submicromolar affinity to the BRD7 BD. Our binding mode analyses indicate that these ligands occupy a uniquely accessible binding cleft in BRD7 and maintain key interactions with the asparagine and tyrosine residues critical for acetylated lysine binding. Finally, we validated the utility and selectivity of the compounds in cell-based models of prostate cancer.</p><p dir="ltr">There are three BAF complexes that have been biochemically characterized up to date: canonical BAF (cBAF), polybromo-associated BAF (PBAF) and GLTSCR1/like-containing BAF (GBAF or ncBAF). All BAF complexes are characterized by containing an ATPase and accessory subunits that may be shared between them or unique to each subtype. PBAF, the BAF subtype of interest of this dissertation, contains four unique subunits: BRD7, PBRM1, ARID2 and BAF45A. We showed that knocking down BRD7 and ARID2 leads to reduction of cell viability in PCa cells with ligand-dependent and independent AR signaling, while knocking down PBRM1 leads to reduction in viability of cells with only ligand-dependent AR signaling. We also performed a chromatin immunoprecipitation assay with BAF45A and observed that it does not colocalize with AR binding sites, indicating that the mechanism by which PBAF regulates AR signaling is indirect. This observation was further supported by the fact that knocking down BRD7 prevents expression of genes related to adaptive processes, but not AR target genes, in response to androgen treatment. Further mechanistic studies will aid in understanding the function of PBAF in PCa. However, overall, our results indicate that PBAF is a promising therapeutic target in PCa models expressing AR, including CRPC systems.</p>
348

GENETIC ARCHITECTURE OF WELFARE INDICATORS AND IMPLEMENTATION OF SINGLE-STEP GENOMIC PREDICTIONS IN BEEF CATTLE POPULATIONS

Amanda Botelho Alvarenga (14221799) 07 December 2022 (has links)
<p>Breeding for improved animal welfare is paramount for increasing the long-term sustainability of the animal food industry. In this context, the main objectives of this dissertation were to understand the genetic and genomic background of welfare indicators in livestock and evaluate the feasibility of single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) for performing genomic selection in beef cattle. This dissertation includes five studies. First, we aimed to test and identify an optimal ssGBLUP scenario for crossbreeding schemes. We simulated multiple populations differing based on the genetic background of the trait, and then we tested alternative models, such as multiple-trait weighted ssGBLUP. Even though more elaborated scenarios were evaluated, a single-trait ssGBLUP approach was recommended when genetic correlation across populations were higher than 0.70. The goal of the second study was to identify genomic regions controlling behavior traits that are conserved across livestock species. We systematically reviewed genomic regions associated with behavioral indicators in beef and dairy cattle, pigs, and sheep. The genomic regions identified in this study were located in genes previously reported controlling human behavioral, neural, and mental disorders. In the third study we used a large dataset (675,678 records) from North American Angus cattle to investigate the genetic background of temperament, a behavioral indicator, recorded on one-year-old calves, and provide the models and protocols for implementing genomic selection. We reported a heritability estimate equal to 0.38 for yearling temperament, and it was, in general, genetically favorably correlated with other productivity and fertility traits. Candidate genomic regions controlling yearling temperament were also identified. The fourth study was based on temperament recorded on North American Angus cows from 2 to 15 years of age (797,187 records). The goal was to understand the genetic and genomic background of temperament across the animal’s lifetime. By fitting a random regression model, we observed that temperament is highly genetically correlated across time. However, animals have differential learning and behavioral plasticity (LBP; changes of the phenotype overtime), although the LBP heritability is low. In our last study we evaluated foot scores (foot angle, FA; and claw set, CS) in American (US) and Australian (AU) Angus cattle aiming to assess the genetic and genomic background of foot scores and investigate the feasibility of performing an across-country genomic evaluation (~1.15 million animals genotyped). Foot scores are heritable (heritability from 0.22 to 0.27), and genotype-by-environment interaction was observed between US and AU Angus populations (genetic correlation equal to 0.61 for FA and 0.76 for CS). An across-country genomic prediction outperformed within-country evaluations in terms of predictivity ability (bias, dispersion, and validation accuracy) and theoretical accuracies. We have also identified genes associated with FA and CS previously reported in human’s bone structure and repair mechanism. In conclusion, this dissertation presents a comprehensive genetic and genomic characterization of welfare indicators (temperament and foot scores) in (inter)national livestock populations. </p>
349

The Roles of the Phosphatases of Regenerating Liver (PRLs) in Oncology and Normal Physiology

Frederick Georges Bernard Nguele Meke (16671573) 03 August 2023 (has links)
<p>  </p> <p>The phosphatases of regenerating liver are a subfamily of protein tyrosine phosphatases that consist of PRL1, PRL2 and PRL3. The overexpression of PRLs promote cell proliferation, migration and invasion and contribute to tumorigenesis and metastasis to aggravate survival outcome. Although there is increasing interest in understanding the implication of these phosphatases in tumor development, currently, limited knowledge is available about their mechanism of action and the efficacy of PRL inhibition in <em>in vivo</em> tumor models, the tumor extrinsic role of PRLs that allow them to impact tumor development, as well as <em>in vivo</em> physiological function of PRLs that could implicate them in diseases other than cancer. The work presented here aims to address these limitations.</p> <p><br></p>
350

<b>Investigation of effects of dietary tryptophan supplementation on growth, physiology, immune response and disease resistance of juvenile channel catfish in stressed, unstressed and diseased conditions</b>

Abdullahi M Idowu (19804296) 07 October 2024 (has links)
<p dir="ltr">The aquaculture industry has experienced remarkable expansion over the past few decades, largely due to the development of modern technologies and intensive farming systems. However, as the industry continues to grow, farming-related and environmental stressors such as overcrowding, poor water conditions and handling have continued to pose major obstacles to the worldwide expansion of this sector. The presence of these stressors affect the growth potential and health of farmed animals leading to significant economic losses. Hence, efficient management of the stress response of farmed species via sustainable means is important to ensure continuous development of the aquaculture sector. This study, therefore, explores the potential of dietary tryptophan supplementation to mitigate stress and improve growth, immune response, and disease resistance in channel catfish (<i>Ictalurus punctatus</i>). The study comprised a 36-day feeding trial where juvenile catfish were fed a tryptophan-supplemented diet under stressed (cortisol-supplemented) and unstressed conditions, followed by a 72-hour disease challenge with <i>Aeromonas hydrophila </i>(vAh). At the end of the study, the results show tryptophan supplementation did not significantly enhance growth or nutrient utilization, likely due to its neuroendocrine effects on feed intake. However, tryptophan demonstrated potential in modulating stress physiology and immune responses, including upregulation of key immune-related genes post-infection and promoting survival against vAh infection. These findings suggest that while tryptophan may not directly improve growth in our specific experimental conditions, its role in stress and immune regulation warrants further investigation, particularly in optimizing its dosage and combination with other dietary additives.</p>

Page generated in 0.0628 seconds