Spelling suggestions: "subject:"geodesic.""
1 |
De linea geodeticaGordan, Paul, January 1900 (has links)
Thesis (doctoral)--Schlesische Friedrich-Wilhelms-Universität zu Breslau, 1862. / Vita.
|
2 |
De lineis brevissimis in datis superficiebus, imprimis de linea geodaeticaMichaelis, Gustav, January 1837 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität Berlin, 1837. / Vita.
|
3 |
Die geodätischen Linien auf RotationsflächenFleischmann, Kurt, January 1915 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Breslau, 1916. / Vita. Includes bibliographical references.
|
4 |
Geodesic knots in hyperbolic 3 manifolds /Kuhlmann, Sally Malinda. January 2005 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Mathematics and Statistics, 2005. / Typescript. Includes bibliographical references (leaves 123-126).
|
5 |
Morse-Theorie und geschlossene GeodätischeRademacher, Hans-Bert. January 1992 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 1991. / Includes bibliographical references (p. 106-111).
|
6 |
The Riemannian Geometry of Orbit Spaces. The Metric, Geodesics, andDmitri Alekseevsky, Andreas Kriegl, Mark Losik, Peter W. Michor, Peter.Michor@esi.ac.at 20 February 2001 (has links)
No description available.
|
7 |
Geodesics on Generalized Plane Wave ManifoldsPena, Moises 01 June 2019 (has links)
A manifold is a Hausdorff topological space that is locally Euclidean. We will define the difference between a Riemannian manifold and a pseudo-Riemannian manifold. We will explore how geodesics behave on pseudo-Riemannian manifolds and what it means for manifolds to be geodesically complete. The Hopf-Rinow theorem states that,“Riemannian manifolds are geodesically complete if and only if it is complete as a metric space,” [Lee97] however, in pseudo-Riemannian geometry, there is no analogous theorem since in general a pseudo-Riemannian metric does not induce a metric space structure on the manifold. Our main focus will be on a family of manifolds referred to as a generalized plane wave manifolds. We will prove that all generalized plane wave manifolds are geodesically complete.
|
8 |
Über cassinische Kurven auf der PseudosphäreFörster, Otto, January 1911 (has links)
Thesis (doctoral)--Westfälischen Wilhelms-Universität zu Münster, 1911. / Cover title. Vita. Includes bibliographical references.
|
9 |
Evolutionary computation of geodesic paths in CAD/CAM /Xue, Feng, January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 138-147).
|
10 |
Geodesics in the complex of curves of a surfaceLeasure, Jason Paige 28 August 2008 (has links)
Not available / text
|
Page generated in 0.0664 seconds