• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gradient-Based Optimization of Highly Flexible Aeroelastic Structures

McDonnell, Taylor G. 21 April 2023 (has links) (PDF)
Design optimization is a method that can be used to automate the design process to obtain better results. When applied to aeroelastic structures, design optimization often leads to the creation of highly flexible aeroelastic structures. There are, however, a number of conventional design procedures that must be modified when dealing with highly flexible aeroelastic structures. First, the deformed geometry must be the baseline for weight, structural, and stability analyses. Second, potential couplings between aeroelasticity and rigid-body dynamics must be considered. Third, dynamic analyses must be modified to handle large nonlinear displacements. These modifications to the conventional design process significantly increase the difficulty of developing an optimization framework appropriate for highly flexible aeroelastic structures. As a result, when designing these structures, often either gradient-free optimization is performed (which limits the optimization to relatively few design variables) or optimization is simply omitted from the design process. Both options significantly decrease the design exploration capabilities of a designer compared to a scenario in which gradient-based optimization is used. This dissertation therefore presents various contributions that allow gradient-based optimization to be more easily used to optimize highly flexible aeroelastic structures. One of our primary motivations for developing these capabilities is to accurately capture the design constraints of solar-regenerative high-altitude long-endurance (SR-HALE) aircraft. In this dissertation, we therefore present a SR-HALE aircraft optimization framework which accounts for the peculiarities of structurally flexible aircraft while remaining suitable for use with gradient-based optimization. These aircraft tend to be extremely large and light, which often leads to significant amounts of structural flexibility. Using this optimization framework, we design an aircraft that is capable of flying year-round at \SI{35}{\degree} latitude at \SI{18}{\kilo\meter} above sea level. We subject this aircraft to a number of constraints including energy capture, energy storage, material failure, local buckling, stall, static stability, and dynamic stability constraints. Critically, these constraints were designed to accurately model the actual design requirements of SR-HALE aircraft, rather than to provide a rough approximation of them. To demonstrate the design exploration capabilities of this framework, we also performed several parameters sweeps to determine optimal design sensitivities to altitude, latitude, battery specific energy, solar efficiency, avionics and payload power requirements, and minimum design velocity. Through this optimization framework, we demonstrate both the potential of gradient-based optimization applied to highly flexible aeroelastic structures and the challenges associated with it. One challenge associated with the gradient-based optimization of highly flexible aeroelastic structures, is the ability to accurately, efficiently, and reliably model the large deflections of these structures in gradient-based optimization frameworks. To enable large-scale optimization involving structural models with large deflections to be performed more easily, we present a finite-element implementation of geometrically exact beam theory which is designed specifically for gradient-based optimization. A key feature of this implementation of geometrically exact beam theory is its compatibility with forward and reverse-mode automatic differentiation, which allows accurate design sensitivities to be obtained with minimal development effort. Another key feature is its native support for unsteady adjoint sensitivity analysis, which allows design sensitivities to be obtained efficiently from time-marching simulations. Other features are also presented that build upon previous implementations of geometrically exact beam theory, including a singularity-free rotation parameterization based on Wiener-Milenkovi\'c parameters, an implementation of stiffness-proportional structural damping using a discretized form of the compatibility equations, and a reformulation of the equations of motion for geometrically exact beam theory from a fully implicit index-1 differential algebraic equation to a semi-explicit index-1 differential algebraic equation. Several examples are presented which verify the utility and validity of each of these features. Another challenge associated with the gradient-based optimization of highly flexible aeroelastic structures is the ability to reliably track and constrain individual dynamic stability modes across the design iterations of an optimization framework. To facilitate the development of mode-specific dynamic stability constraints in gradient-based optimization frameworks we develop a mode tracking method that uses an adaptive step size in order to maintain an arbitrarily high degree of confidence in mode correlations. This mode tracking method is then applied to track the modes of a linear two-dimensional aeroelastic system and a nonlinear three-dimensional aeroelastic system as velocity is increased. When used in a gradient-based optimization framework, this mode tracking method has the potential to allow continuous dynamic stability constraints to be constructed without constraint aggregation. It also has the potential to allow the stability and shape of specific modes to be constrained independently. Finally, to facilitate the development and use of highly flexible aeroelastic systems for use in gradient-based optimization frameworks, we introduce a general methodology for coupling aerodynamic and structural models together to form modular monolithic aeroelastic systems. We also propose efficient methods for computing the Jacobians of these coupled systems without significantly increasing the amount of time necessary to construct these systems. For completeness we also discuss how to ensure that the resulting system of equations constitutes a set of first-order index-1 differential algebraic equations. We then derive direct and adjoint sensitivities for these systems which are compatible with automatic differentiation so that derivatives for gradient-based optimization can be obtained with minimal development effort.
2

Ultimate load limit analysis of steel structures accounting for nonlinear behaviour of connections / Analyse limite ultime des structures en acier en prenant en compte le comportement non linéaire des connexions

Imamovic, Ismar 22 September 2017 (has links)
Cette thèse traite de l'analyse limite des structures de châssis en acier, qui s'utilise souvent comme la structure principale de support des bâtiments. La structure du cadre en acier est caractérisée par une réponse très ductile et un grand potentiel pour dissiper l'énergie, ce qui est crucial pour la résistance par rapport aux tremblements de terre. La ductilité dans la réponse de la structure est la cause du comportement du matériau lui-même et du comportement des connexions entre les éléments de la structure. Les connexions entre les poutres et les poteaux peuvent influencer de manière significative la réponse de la structure du cadre en acier, parfois jusqu'à 30%. L'idée est de intégrer le comportement des connexions par les éléments de poutres qui seront situés dans les coins du cadre et la modélisation du reste serra fait avec des éléments de poutres non-linéaires qui décrirons le comportement des poutres en acier. Cette recherche est composée de deux parties. La première partie est consacrée au comportement des connexions structurelles, la deuxième partie présente le développement de l'élément fini du faisceau non linéaire capable de représenter le comportement ductile d'un élément de la structure en acier. Dans la première partie de la thèse, nous définissons la procédure d'identification des paramètres constitutifs pour le modèle couplé de plasticité-dégâts avec dix-huit inconnus. Ce modèle constitutif est très robuste et capable de représenter une large gamme de problèmes. La procédure définie a été utilisée dans la préparation de tests expérimentaux pour trois types de connexions en acier structuré. Les tests expérimentaux ont été effectués pour deux cas de charge. Pour la première, la charge a été appliquée dans un sens avec les cycles de chargement et de déchargement. À partir des mesures expérimentales, nous avons conclu que le modèle de plasticité peut bien représentée le comportement de la connexion structurale. Paramètres constitutifs ont été déterminés à partir des résultats de l'expérimentation, on a utilisé une poutre géométriquement exacte avec la loi bilinéaires renforcement du matériel et la loi linéaire pour le ramollissement. Également, on a effectué des essais expérimentaux de deux types de raccords en acier en cas de chargement cyclique. Les données mesurées montrent que le modèle de la plasticité n'est pas assez bon pour décrire le comportement de connexion pour ce type de charge. A savoir, en raison de changements du sens de l'application du chargement, les connexions montrent moins de rigidité, qui peut être décrite avec un modèle constitutif de dommages. Pour cette raison, nous avons développé un nouveau modèle plasticité-dommages qui est capable d'inclure le phénomène mentionné ci-dessus. A la fin de cette section est faite l'identification des paramètres constitutifs. La deuxième partie de la thèse de doctorat est composé de formulations théoriques et la mise en œuvre numérique des faisceaux géométriquement exacte. La réponse de durcissement de la poutre comprend l'interaction entre les forces de la section résultant du stress (N, T et M), et la réponse de ramollissement est définit par la loi non linéaire. Ce type d'élément fini de poutre est capable de décrire le comportement ductile des structures en acier et inclure les effets du second ordre, qui sont très importantes pour l'analyse ultime des structures de cadre en acier. L'élément fini développé de poutre géométriquement exacte et les lois définies de liaison de comportement dans la construction en acier, offrant la possibilité d'une analyse de haute qualité des structures en acier. En utilisant les modèles de poutre proposé et la méthodologie de modélisation des structures de châssis en acier, il est possible de déterminer une distribution réaliste des forces de section transversale , y compris la redistribution due à la formation de rotules plastiques. / This thesis deals with the ultimate load limit analysis of steel frame structures. The steel frame structure has a very ductile response and a large potential to dissipate energy, which is crucial in the case of earthquakes. The ductility in the response of the structure comes from the behavior of the material itself and the behavior of the semi-rigid structural connections. The semi-rigid connections between beams and columns can significantly influence the response of the structure, sometimes up to 30%. In this thesis, we propose a methodology for modeling steel frame structures with included connection behavior. The idea is to model the behavior of the structural connections by the beam elements positioned in the corners of the steel frame structure. Other members of the steel frame structure, steel beams, and columns, will be modeled with nonlinear beam elements. This research consists of two parts. The first part deals with the behavior of the structural steel connections. In the second part, we present the development of the nonlinear beam element capable of representing the ductile behavior of steel structural elements, beams and columns. In the first part of the thesis, we define constitutive parameters identification procedure for the coupled plasticity-damage model with eighteen unknowns. This constitutive model is very robust and capable of representing a wide range of problems. The identification procedure was used in the preparation of experimental tests for three different types of structural steel connections. The experimental tests have been performed for two load cases. In the first, the load was applied in one direction with both the loading and unloading cycles. From the experimental measurements, we have concluded that the response of the experimental structure can be represented by the plasticity model only because no significant change in the elastic response throughout the loading program was observed. Therefore, we have chosen an elastoplastic geometrically exact beam to describe connection behavior. The hardening response of the beam is governed by bilinear law, and the softening response is governed by nonlinear exponential law. The identification of the parameters has been successfully done with fifteen unknown parameters identified. The two types of the experimental structures were also exposed to the cyclic loading. Measured experimental data shows complex connection behavior that cannot be described by the plasticity model alone. Namely, after changing load direction stiffness of the connection decreases. This suggests that the damage model should be incorporated in the constitutive law for the connections behavior as well. Therefore, we propose a new coupled plasticity-damage model capable of representing the loss in the stiffness of the connection with the changing of the load direction. At the end of this part, we also give the constitutive parameters identification for the proposed model. The second part of the thesis deals with the theoretical formulation and numerical implementation of the elastoplastic geometrically exact beam. The hardening response of the beam includes interaction between stress resultant section forces (N, T and M), and the softening response of the beam, which is governed by the nonlinear law. This type of the beam element is capable of representing the ductile behavior of a steel frame structure, and it takes into account second order theory effects. Performed numerical simulations show that the proposed geometrically nonlinear beam element is very robust and is able to provide a more precise limit load analysis of steel frame structures. By using proposed methodology for modeling steel structures, we are able to obtain the real distribution of section forces, including their redistribution caused by forming of the hinges and the connections behavior.
3

Simulation numérique du processus d’assemblage de câbles flexibles en grands déplacements / Numerical simulation of the assembly process of flexible cables under large displacements

Cottanceau, Emmanuel 10 April 2018 (has links)
Avec l’essor de l’électronique embarquée, les câbles électriques constituentune part importante des pièces automobiles tandis que l’espace à bord n’a cessé de diminuer. Leur flexibilité requiert la prédiction de leur déformation durant leur montage afin d’éviter le contact avec d’autres pièces du véhicule et leur endommagement. Les outils actuels ne permettent pas une prédiction assez réaliste et précise de leur comportement, nécessaire dans un volume de travail très restreint. Les étapes de montage sont donc validées via la réalisation de maquettes réelles coûteuses. Cette thèsea pour but d’améliorer la simulation numérique de ces pièces souples. Nous proposonsici un code de simulation 3D basé sur un modèle de poutre géométriquement exact résolu par la méthode des éléments finis. Son originalité tient dans le couplage des quaternions pour modéliser les rotations 3D et de la méthode asymptotique numérique pour la continuation du système non linéaire qui lui confère une grande robustesse. Un banc d’essai permettant l’identification des paramètres homogénéisés nécessaires au modèle numérique et sa validation par comparaison de la géométrie finale et du chemin d’équilibre est présenté. Combinés à des développements analytiques sur les modèles de poutres avec cisaillement, les essais mènent à une évaluation critique du modèle deTimoshenko 3D pour la représentation des torons de câbles. / With on-board electronics expansion, electrical cables are an essential partof automotive pieces and the space on board has plummeted. Their flexibility requires to predict their deformation during vehicle assembly in order to avoid the contact with other pieces and damaging. Current numerical tools do not allow a realistic and accurate prediction, which is necessary in the obstructed car space. Assembly steps thus are validated on costly physical mock-ups. This thesis aims at improving numerical simulation of these flexible pieces. We herein propose a 3D algorithm based on a geometrically exact beam model solved by the finite element method. This work’s originality stands in coupling quaternions as rotational parameters and the asymptotic numerical method as nonlinear solver which results in a very robust algorithm. A test bench designed to identify the homogenized beam parameters of the numerical model and to validate it by offering a comparison on the final geometry and the equilibrium path is presented. Analytical developments on shear beams and the results of these experimental tests lead to a critical evaluation of the 3D Timoshenko model for representing stranded cables.
4

Improved Numerical And Numeric-Analytic Schemes In Nonlinear Dynamics And Systems With Finite Rotations

Ghosh, Susanta 01 1900 (has links)
This thesis deals with different computational techniques related to some classes of nonlinear response regimes of engineering interest. The work is mainly divided into two parts. In the first part different numeric-analytic integration techniques for nonlinear oscillators are developed. In the second part, procedures for handling arbitrarily large rotations are addressed and a few novel developments are reported in the process. To begin the first part, we have proposed an explicit numeric-analytic technique, based on the Adomian decomposition method, for integrating strongly nonlinear oscillators. Numerical experiments suggest that this method, like most other numerical techniques, is versatile and can accurately solve strongly nonlinear and chaotic systems with relatively larger step-sizes. It is then demonstrated that the procedure may also be effectively employed for solving two-point boundary value problems with the help of a shooting algorithm. This has been followed up with the derivation and numerical exploration of variants of a recently developed numeric-analytic technique, the multi-step transversal linearization (MTrL), in the context of nonlinear oscillators of relevance in engineering dynamics. A considerable generalization and improvement over the original form of a MTrL strategy is achieved in this study. Finally, we have used the concept of MTrL method on the nonlinear variational (rate) equation corresponding to a nonlinear oscillator and thus derive another family of numeric-analytic techniques, presently referred to as the multi-step tangential linearization (MTnL). A comparison of relative errors through the MTrL and MTnL techniques consistently indicate a superior quality of approximation via the MTrL route. In the second part of the thesis, a scheme for numerical integration of rigid body rotation is proposed using only rudimentary tensor analysis. The equations of motion are rewritten in terms of rotation vectors lying in same tangent spaces, thereby facilitating vector space operations consistent with the underlying geometric structure of rotation. One of the most important findings of this part of the dissertation is that the existing constant-preserving algorithms are not necessarily accurate enough and may not be ideally applicable to cases wherein numerical accuracy is of primary importance. In contrast, the proposed rotation-algorithms, the higher order ones in particular, are significantly more accurate for conservative rotational systems for reasonably long time. Similar accuracy is expected for dissipative rotational systems as well. The operators relating rotation variables corresponding to different tangent spaces are also investigated and this should provide further insight into the understanding of rotation vector parametrization. A rotation update is next proposed in terms of rotation vectors. This update, employed along with interpolation of relative rotations, gives a strain-objective and path independent finite element implementation of a geometrically exact beam. The method has the computational advantage of requiring considerably less nodal variables due to the use of rotation vector parametrization. We have proposed a new isoparametric interpolation of nodal quaternions for computing the rotation field within an element. This should be a computationally efficient alternative to the interpolation of local rotations. It has been proved that the proposed interpolation of rotation leads to the objectivity of strain measures. Several numerical experiments are conducted to demonstrate the frame invariance, path-independence and other superior aspects of the present approach vis-`a-vis the existing methods based on the rotation vector parametrization. It is emphasized that, in order to develop an objective finite element formulation, the use of relative rotation is not mandatory and an interpolation of total rotation variables conforming with the rotation manifold should suffice.
5

Towards multidisciplinary design optimization capability of horizontal axis wind turbines

McWilliam, Michael Kenneth 13 August 2015 (has links)
Research into advanced wind turbine design has shown that load alleviation strategies like bend-twist coupled blades and coned rotors could reduce costs. However these strategies are based on nonlinear aero-structural dynamics providing additional benefits to components beyond the blades. These innovations will require Multi-disciplinary Design Optimization (MDO) to realize the full benefits. This research expands the MDO capabilities of Horizontal Axis Wind Turbines. The early research explored the numerical stability properties of Blade Element Momentum (BEM) models. Then developed a provincial scale wind farm siting models to help engineers determine the optimal design parameters. The main focus of this research was to incorporate advanced analysis tools into an aero-elastic optimization framework. To adequately explore advanced designs with optimization, a new set of medium fidelity analysis tools is required. These tools need to resolve more of the physics than conventional tools like (BEM) models and linear beams, while being faster than high fidelity techniques like grid based computational fluid dynamics and shell and brick based finite element models. Nonlinear beam models based on Geometrically Exact Beam Theory (GEBT) and Variational Asymptotic Beam Section Analysis (VABS) can resolve the effects of flexible structures with anisotropic material properties. Lagrangian Vortex Dynamics (LVD) can resolve the aerodynamic effects of novel blade curvature. Initially this research focused on the structural optimization capabilities. First, it developed adjoint-based gradients for the coupled GEBT and VABS analysis. Second, it developed a composite lay-up parameterization scheme based on manufacturing processes. The most significant challenge was obtaining aero-elastic optimization solutions in the presence of erroneous gradients. The errors are due to poor convergence properties of conventional LVD. This thesis presents a new LVD formulation based on the Finite Element Method (FEM) that defines an objective convergence metric and analytic gradients. By adopting the same formulation used in structural models, this aerodynamic model can be solved simultaneously in aero-structural simulations. The FEM-based LVD model is affected by singularities, but there are strategies to overcome these problems. This research successfully demonstrates the FEM-based LVD model in aero-elastic design optimization. / Graduate / 0548 / pilot.mm@gmail.com
6

Contribution à la modélisation du comportement dynamique des paliers à roulements de réducteurs aéronautiques / Contribution to the dynamic modeling of rolling bearings of aeronautical gearboxes

Bovet, Christophe 07 May 2015 (has links)
La quête de minimisation du ratio poids-puissance, omniprésente dans l'industrie aéronautique, conduit à une plus grande souplesse structurelle des boîtes de transmission de puissance d'hélicoptères.Cette souplesse structurelle, associée aux sollicitations sévères mises en jeu, entraîne des déformations non négligeables des arbres et carters, et nuit naturellement à la tenue en service des roulements.S'il n’est pas maîtrisé, le désalignement des portées de roulements accroît fortement les efforts vus par la cage et peut conduire à sa rupture en fatigue.Le travail proposé s'intéresse à la modélisation du comportement dynamique des roulements de réducteurs aéronautiques et vise plus particulièrement à anticiper ce mode de ruine.Le modèle développé permet d'estimer les sollicitations de la cage en fonctionnement.Ces informations, précieuses aux ingénieurs, permettront de mieux maîtriser, et donc d'optimiser le processus de dimensionnement des roulements. / The quest for minimizing the power to weight ratio, omnipresent in the aircraft industry, has led to greater structural flexibility of helicopter gearboxes.This increasing flexibility combined with the severe loads which it involves, causes significant strains on shafts and housings, and may be detrimental to rolling bearing service life expectancy.An unchecked misalignment of bearing seats greatly increases cage stresses and it may cause its premature fatigue failure.The present work focuses on modeling the dynamic behavior of rolling bearings of aeronautical gearboxes and it specifically anticipates this failure mode.The model developed is able to estimate cage stresses in operation. This information is valuable to engineers, it allows a better control and thus an optimization of the rolling bearings design process.

Page generated in 0.4871 seconds