• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Nondestructive Testing in Civil Engineering

Groves, Paul January 2010 (has links)
Presented in this thesis are two studies that apply nondestructive testing methods to civil engineering problems. The first study examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. The effects of Lamb wave propagation on the ultrasonic testing results are investigated. Microstructure evaluation revealed two different types of cast iron within the pipes sampled: grey cast iron and ductile iron. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference). Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using samples from exhumed water pipes must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes. The second study presented in this thesis was performed to evaluate the effectiveness of three geophysical methods for geotechnical site characterization in swamps and environmentally sensitive wetland areas. The geophysical methods evaluated were electrical resistivity imaging (ERI), seismic refraction (SR), and multiple-channel analysis of surface waves (MASW). The geophysical test results were verified against the results from borehole and CPT logs. The ERI results were best for determining the depth to the glacial till. The SR results overestimated the depth to the till because of the presence of a stiffness reversal. The MASW results predicted the depth to the refusal till layer less accurately than the ERI method. However, this method was able to detect the three distinct layers above the till. These methods can be used as a basis for further development to optimize a procedure to reduce the number of boreholes required for conventional site investigations in areas that are environmentally sensitive or where access is restricted.
2

Applications of Nondestructive Testing in Civil Engineering

Groves, Paul January 2010 (has links)
Presented in this thesis are two studies that apply nondestructive testing methods to civil engineering problems. The first study examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. The effects of Lamb wave propagation on the ultrasonic testing results are investigated. Microstructure evaluation revealed two different types of cast iron within the pipes sampled: grey cast iron and ductile iron. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference). Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using samples from exhumed water pipes must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes. The second study presented in this thesis was performed to evaluate the effectiveness of three geophysical methods for geotechnical site characterization in swamps and environmentally sensitive wetland areas. The geophysical methods evaluated were electrical resistivity imaging (ERI), seismic refraction (SR), and multiple-channel analysis of surface waves (MASW). The geophysical test results were verified against the results from borehole and CPT logs. The ERI results were best for determining the depth to the glacial till. The SR results overestimated the depth to the till because of the presence of a stiffness reversal. The MASW results predicted the depth to the refusal till layer less accurately than the ERI method. However, this method was able to detect the three distinct layers above the till. These methods can be used as a basis for further development to optimize a procedure to reduce the number of boreholes required for conventional site investigations in areas that are environmentally sensitive or where access is restricted.
3

Using Geophysics and Terrestrial LiDAR to Assess Stormwater Parameters in Vacant Lots in Philadelphia

Zarella, Paul Joseph January 2016 (has links)
Managing stormwater volume and quality has become an important issue in urban hydrology. Impervious cover associated with urbanization increases surface runoff volumes and degrades the water quality of urban streams and rivers. Cities with combined stormwater and sewer lines such as Philadelphia, have been tasked with decreasing runoff volumes to help reduce combined sewer overflows and improve the water quality of local waterways. The Philadelphia Water Department uses the Environmental Protection Agency’s Storm Water Management Model (SWMM) to predict runoff and evaluate if proposed stormwater infrastructure will reduce overflows. This study focused on the hydrogeological properties of grassy areas on and near Temple University’s main campus in north Philadelphia. The dataset includes terrestrial LiDAR, ground penetrating radar, soil moisture sensor, surface compaction, and double ring and mini disk infiltrometer measurements. These data were used to establish what controls infiltration rates in the area and also provide input parameters for a SWMM model. A terrestrial LiDAR scan of the Berks St. site, a grassy vacant lot located just east of Temple’s campus was used to generate a high-resolution digital elevation model. This elevation model was used to calculate the depression storage parameter, partition subcatchments in the SWMM model, and calculate a topographic wetness index (TWI). The TWI is a microtopography-based predictor of where runoff will collect and infiltrate. The TWI assumes a homogeneous infiltration rate and that runoff is routed by topography. This TWI was compared with soil moisture sensor measurements to determine if the microtopographic index could predict the majority of change in soil moisture at the field site. To determine if accounting for buried debris helped strengthen the TWI, GPR was used to map the extent and depth of subsurface objects. The results indicate that the TWI and GPR data could not predict where runoff would accumulate and then infiltrate because the TWI’s assumptions were not met. Measurements made with a double ring infiltrometer indicate that infiltration rates at the site were both high and heterogeneous (40 to 1060 mm/hr), allowing precipitation to infiltrate into the subsurface rather than become runoff, minimizing the influence of microtopography. Co-located surface compaction and double ring infiltrometer measurements at sites on and nearby Temple’s campus showed a negative correlation between surface compaction and infiltration rate (R2 = 0.67). Compacted areas on campus had lower infiltration rates and exhibited depression storage and runoff during rain events. Less compacted areas off campus had higher infiltration rates and exhibited no depression storage or runoff. The results of this study showed variance in surface compaction caused grassy areas around Temple’s campus respond differently to rain events. The results not only provided field-based parameter values for a SWMM model, but shows that compaction’s influence on infiltration should be considered when constructing a SWMM model. Runoff volumes in SWMM may be underestimated if compacted grassy areas are modeled with high infiltration rates. / Geology

Page generated in 0.0418 seconds