Spelling suggestions: "subject:"gershgorin"" "subject:"gerschgorin""
1 |
New Extensions and Applications of Geršgorin TheoryMarsli, Rachid 11 August 2015 (has links)
In this work we discover for the first time a strong relationship between Geršgorin theory and the geometric multiplicities of eigenvalues. In fact, if λ is an eigenvalue of an n × n matrix A with geometric multiplicity k, then λ is in at least k Geršgorin discs of A. Moreover, construct the matrix C by replacing, in every row, the (k − 1) smallest off-diagonal entries in absolute value by 0, then λ is in at least k Geršgorin discs of C. We also state and prove many new applications and consequences of these results as well as we update an improve some important existing ones.
|
2 |
Lokalizacije Geršgorinovog tipa za nelinearne probleme karakterističnih korena / Geršgorin-type localizations for Nonlinear Eigenvalue ProblemsGardašević Dragana 21 February 2019 (has links)
<p>Predmet istraživanja u doktorskoj disertaciji je metoda za konstrukciju<br />lokalizacionih skupova za spektar i pseudospektar nelinearnih problema<br />karakterističnih korena bazirana na Geršgorinovoj teoremi i njenim<br />generalizacijama koja koristi osobine poznatih podklasa H-matrica.<br />Navedena tvrđenja i primeri rasvetljavaju odnose između navedenih<br />lokalizacionih skupova, što je posebno značajno za primenu u praksi.<br />Sadržaj ovog rada time predstavlja polaznu tačku za dublja istraživanja na<br />temu konstrukcije lokalizacionih skupova za spektar i pseudospektar<br />nelinearnih problema karakterističnih korena Geršgorinovog tipa.</p> / <p>The subject of research in the doctoral dissertation is a method for constructing<br />spectra and pseudospectra localization sets for nonlinear eigenvalue problems<br />based on Geršgorin theorem and its generalizations, that uses the properties of<br />well-known subclasses of H-matrices. Theorems and examples given in this<br />paper are showing relations between stated localization sets, which is very<br />important for practical applications. Therefore, the content of this paper represent<br />the starting point for deeper explorations on the subject of constructing spectra<br />and pseudospectra localization sets for Geršgorin type nonlinear eigenvalue<br />problems.</p>
|
3 |
Algorithms for computing the optimal Geršgorin-type localizations / Алгоритми за рачунање оптималних локализација Гершгориновог типа / Algoritmi za računanje optimalnih lokalizacija Geršgorinovog tipaMilićević Srđan 27 July 2020 (has links)
<p>There are numerous ways to localize eigenvalues. One of the best known results is that the spectrum of a given matrix ACn,n is a subset of a union of discs centered at diagonal elements whose radii equal to the sum of the absolute values of the off-diagonal elements of a corresponding row in the matrix. This result (Geršgorin's theorem, 1931) is one of the most important and elegant ways of eigenvalues localization ([63]). Among all Geršgorintype sets, the minimal Geršgorin set gives the sharpest and the most precise localization of the spectrum ([39]). In this thesis, new algorithms for computing an efficient and accurate approximation of the minimal Geršgorin set are presented.</p> / <p>Постоје бројни начини за локализацију карактеристичних корена. Један од најчувенијих резултата је да се спектар дате матрице АCn,n налази у скупу који представља унију кругова са центрима у дијагоналним елементима матрице и полупречницима који су једнаки суми модула вандијагоналних елемената одговарајуће врсте у матрици. Овај резултат (Гершгоринова теорема, 1931.), сматра се једним од најзначајнијих и најелегантнијих начина за локализацију карактеристичних корена ([61]). Међу свим локализацијама Гершгориновог типа, минимални Гершгоринов скуп даје најпрецизнију локализацију спектра ([39]). У овој дисертацији, приказани су нови алгоритми за одређивање тачне и поуздане апроксимације минималног Гершгориновог скупа.</p> / <p>Postoje brojni načini za lokalizaciju karakterističnih korena. Jedan od najčuvenijih rezultata je da se spektar date matrice ACn,n nalazi u skupu koji predstavlja uniju krugova sa centrima u dijagonalnim elementima matrice i poluprečnicima koji su jednaki sumi modula vandijagonalnih elemenata odgovarajuće vrste u matrici. Ovaj rezultat (Geršgorinova teorema, 1931.), smatra se jednim od najznačajnijih i najelegantnijih načina za lokalizaciju karakterističnih korena ([61]). Među svim lokalizacijama Geršgorinovog tipa, minimalni Geršgorinov skup daje najprecizniju lokalizaciju spektra ([39]). U ovoj disertaciji, prikazani su novi algoritmi za određivanje tačne i pouzdane aproksimacije minimalnog Geršgorinovog skupa.</p>
|
Page generated in 0.0471 seconds