• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 46
  • 25
  • 18
  • 12
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 376
  • 169
  • 126
  • 31
  • 31
  • 30
  • 29
  • 29
  • 28
  • 28
  • 28
  • 27
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Pilot Scale Wheat Germ Stabilization In A Spouted Bed

Oymak, Mert Mehmet 01 May 2006 (has links) (PDF)
ABSTRACT PILOT SCALE WHEAT GERM STABILIZATION IN A SPOUTED BED OYMAK, Mert Mehmet M.S., Department of Chemical Engineering Supervisor: Prof. Dr. N. Suzan KINCAL Co-Supervisor: Dr. Cevdet &Ouml / ZTiN April 2006, 97 pages Wheat germ, a nutritionally rich by product of wheat milling, has poor storage stability due to its content of essential fatty acids along with oxidative enzymes. A pilot scale conventional spouted bed was designed and constructed as a high temperature &amp / #8211 / short time treatment unit to bring about drying and roasting effects. By facilitating the use of high temperature inlet air, yet maintaining the bed solids at a temperature below the degradation temperature, spouted bed dryers achieve thermal efficiencies unachievable by other dryers. The inlet diameter, diameter of the column and the angle of the cone were 6.2 cm, 16 cm and 65&deg / respectively. Thermocouples were placed on the inlet, exit and discharge gate of the column. Temperature profiles were recorded during drying, roasting and cooling of wheat germ. The drying temperatures ranged between 201 and 243&deg / C, operation times between 6.5 and 12 minutes, and air flow rate between 55 and 65 m3/h. It was seen that the degree of roasting was closely related to the exit temperature of the air. The exit air temperature range was determined as 155-160&deg / C. Sensory evaluation tests were carried out. Wheat germ processed at 60 m3/h &amp / #8211 / 209&deg / C for 12 min and 55 m3/h &amp / #8211 / 216&deg / C for 7 min were selected as the samples for storage studies, on the basis of the results of sensory evaluation tests. Reproducibility runs were carried out for the selected conditions. The bed height increase study was carried out at 60 m3/h &amp / #8211 / 240 to 243&deg / C. The processed and raw wheat germ was stored in paper pouches at 40&deg / C, to estimate the shelf life on the basis of earlier studies. Peroxide values of both raw and processed samples were followed during the storage period. The initial peroxide values of raw germ, processed samples, and reproducibility samples were 1.1 meq peroxide / kg oil. The peroxide value formation data were found to follow zero order rate kinetics. Comparison of the peroxide value changes in the processed and raw samples indicated that in the studied range of 55-60 m3/h &amp / #8211 / 209-216&deg / C &amp / #8211 / 7-12 min, about 8&amp / #8211 / 10 fold increase in the shelf life due to stabilization was achieved. The color parameters of each run were determined using the CIELAB (L*, a*, b*) system. Total color difference (&amp / #8710 / E*) values due to processing were calculated using L*, a* and b* values, to be between 2.3 and 58.6.
152

Nuclear Magnetic Resonance metabolomic fingerprint of the Interleukin 10 gene deficient mouse model of Inflammatory Bowel Disease

Tso, Victor Key 11 1900 (has links)
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder that occurs as a consequence of a genetic mutation that results in an overly aggressive immune response to normal bacteria. Metabolomics is a new born cousin to genomics and proteomics and involves a high throughput identification, characterization and quantification of small molecule metabolites generated by the organism. This study will show that metabolomics can be an effective tool in studying the differences between wild type and IL 10 KO mice as they age in axenic and conventional environments, and the onset of disease in a conventional environment. I show specific changes upon colonizing axenic mice with fecal bacteria that are similar to changes occurring over 16 weeks of conventional growth. Several bacterial metabolites have been identified that may play a role in the pathogenesis or provide clues to the interactions of the gut microbiota with the intestinal immune system. / Experimental Medicine
153

Investigating Sex Specific Cell Cycle Regulation in Fetal Germ Cells

Cassy Spiller Unknown Date (has links)
During development, somatic cell cues direct sex-specific differentiation of germ cells that is characterised by two distinct cell cycle states. At 12.5 days post coitum (dpc) in a testis, XY germ cells stop proliferating and enter G1/G0 arrest. In the ovary, XX germ cells bypass G1/G0 arrest and instead enter the first phase of meiosis I from 13.5 dpc. Whilst it is hypothesised that errors in cell cycle control during development precede the formation of testicular germ cell tumours, the mechanism of cell cycle control at this time has not been thoroughly investigated. This project therefore sought to explore the mechanism of XY germ cell G1/G0 arrest using several approaches. Although cell cycle regulation for somatic cells is well established, we know very little regarding germ cell control of this process. Therefore my first aim was to profile this machinery at the transcript level using a cell cycle cDNA array. Purified populations of germ cells were isolated both before and after sex differentiation and expression of 112 cell cycle related genes was assessed. From this study a comprehensive network governing apoptosis and calcium signalling that was common to both XX and XY germ cells was observed. Importantly, the retinoblastoma family and cyclin dependent kinase inhibitor p21 was implicated in the regulation of G1/G0 arrest in XY germ cells. Lastly, XX germ cells displayed a down-regulation of genes involved in both G1 and G2 phases of the cell cycle consistent with their progression past G1 phase. This study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors for future investigation in order to understand cases of aberrant cell cycle control in these specialised cells. In order to investigate several candidate genes identified within the cell cycle array, I next sought to generate a germ cell-specific Cre recombinase mouse model for use in conditional knockout studies. As current Cre lines lack specificity or appropriate temporal expression, we used the germ cell-specific regions of the fragilis promoter to drive Cre expression during germ cell specification. Eleven founder lines were generated using this construct and four were analysed using a reporter line. Although we have not achieved germ cell expression from these lines to date, analysis continues in order to identify an invaluable new tool for germ cell research. Following the implication of the retinoblastoma family in XY germ cell G1/G0 arrest, I next investigated the role of RB in these cells using the Rb null mutant. RB is a known cell cycle suppressor that controls this process in many cell types and, subsequently, mice homozygous for the Rb deletion die in utero at 14.5 dpc. Using this model we analysed developing gonads from 14.5 – 16.5 dpc using ex vivo culture techniques. At 14.5 dpc when wild type germ cells have arrested, proliferating germ cells were detected in the absence of Rb using proliferation marker Ki67. This proliferation was accompanied by a slight increase in germ cell number at 14.5 dpc, however, two days later at 16.5 dpc germ cell numbers were slightly decreased in the Rb-/- testes. During this time we could also detect increased expression of other RB family members p107 and p130, suggesting that these factors may compensate for the loss of Rb in the germ line. This investigation has implicated RB in the regulation of XY germ cell G1/G0 arrest and will form the basis for future work aimed at understanding the initiation of this cell cycle state. In addition to RB, a lesser-known transcription factor was also investigated in the initiation and maintenance of XY germ cell G1/G0 arrest. The high mobility group box transcription factor 1 (HBP1) suppresses proliferation and promotes differentiation in various cell types and was recently identified within the XY germ cells at the appropriate time of sex differentiation. In my analysis two Hbp1 transcripts were identified within the XY germ cells that display different sub-cellular localisations in vitro. Next, Hbp1-LacZ reporter lines were generated to aid in understanding the germ cell-specific regulation of these transcripts and lastly, I analysed the genetrap mutation for Hbp1. Surprisingly, this model revealed no aberrations to germ cell-cell cycle control during development. In summary, I have performed the first comprehensive study of the cell cycle machinery utilised by germ cells as they undergo the first stages of sex differentiation. Using loss-of-function models I was able to implicate the cell cycle regulator RB specifically in XY germ cell G1/G0 arrest and, conversely, demonstrate that the transcription factor HBP1 is not required for this process.
154

Investigating Sex Specific Cell Cycle Regulation in Fetal Germ Cells

Cassy Spiller Unknown Date (has links)
During development, somatic cell cues direct sex-specific differentiation of germ cells that is characterised by two distinct cell cycle states. At 12.5 days post coitum (dpc) in a testis, XY germ cells stop proliferating and enter G1/G0 arrest. In the ovary, XX germ cells bypass G1/G0 arrest and instead enter the first phase of meiosis I from 13.5 dpc. Whilst it is hypothesised that errors in cell cycle control during development precede the formation of testicular germ cell tumours, the mechanism of cell cycle control at this time has not been thoroughly investigated. This project therefore sought to explore the mechanism of XY germ cell G1/G0 arrest using several approaches. Although cell cycle regulation for somatic cells is well established, we know very little regarding germ cell control of this process. Therefore my first aim was to profile this machinery at the transcript level using a cell cycle cDNA array. Purified populations of germ cells were isolated both before and after sex differentiation and expression of 112 cell cycle related genes was assessed. From this study a comprehensive network governing apoptosis and calcium signalling that was common to both XX and XY germ cells was observed. Importantly, the retinoblastoma family and cyclin dependent kinase inhibitor p21 was implicated in the regulation of G1/G0 arrest in XY germ cells. Lastly, XX germ cells displayed a down-regulation of genes involved in both G1 and G2 phases of the cell cycle consistent with their progression past G1 phase. This study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors for future investigation in order to understand cases of aberrant cell cycle control in these specialised cells. In order to investigate several candidate genes identified within the cell cycle array, I next sought to generate a germ cell-specific Cre recombinase mouse model for use in conditional knockout studies. As current Cre lines lack specificity or appropriate temporal expression, we used the germ cell-specific regions of the fragilis promoter to drive Cre expression during germ cell specification. Eleven founder lines were generated using this construct and four were analysed using a reporter line. Although we have not achieved germ cell expression from these lines to date, analysis continues in order to identify an invaluable new tool for germ cell research. Following the implication of the retinoblastoma family in XY germ cell G1/G0 arrest, I next investigated the role of RB in these cells using the Rb null mutant. RB is a known cell cycle suppressor that controls this process in many cell types and, subsequently, mice homozygous for the Rb deletion die in utero at 14.5 dpc. Using this model we analysed developing gonads from 14.5 – 16.5 dpc using ex vivo culture techniques. At 14.5 dpc when wild type germ cells have arrested, proliferating germ cells were detected in the absence of Rb using proliferation marker Ki67. This proliferation was accompanied by a slight increase in germ cell number at 14.5 dpc, however, two days later at 16.5 dpc germ cell numbers were slightly decreased in the Rb-/- testes. During this time we could also detect increased expression of other RB family members p107 and p130, suggesting that these factors may compensate for the loss of Rb in the germ line. This investigation has implicated RB in the regulation of XY germ cell G1/G0 arrest and will form the basis for future work aimed at understanding the initiation of this cell cycle state. In addition to RB, a lesser-known transcription factor was also investigated in the initiation and maintenance of XY germ cell G1/G0 arrest. The high mobility group box transcription factor 1 (HBP1) suppresses proliferation and promotes differentiation in various cell types and was recently identified within the XY germ cells at the appropriate time of sex differentiation. In my analysis two Hbp1 transcripts were identified within the XY germ cells that display different sub-cellular localisations in vitro. Next, Hbp1-LacZ reporter lines were generated to aid in understanding the germ cell-specific regulation of these transcripts and lastly, I analysed the genetrap mutation for Hbp1. Surprisingly, this model revealed no aberrations to germ cell-cell cycle control during development. In summary, I have performed the first comprehensive study of the cell cycle machinery utilised by germ cells as they undergo the first stages of sex differentiation. Using loss-of-function models I was able to implicate the cell cycle regulator RB specifically in XY germ cell G1/G0 arrest and, conversely, demonstrate that the transcription factor HBP1 is not required for this process.
155

Investigating Sex Specific Cell Cycle Regulation in Fetal Germ Cells

Cassy Spiller Unknown Date (has links)
During development, somatic cell cues direct sex-specific differentiation of germ cells that is characterised by two distinct cell cycle states. At 12.5 days post coitum (dpc) in a testis, XY germ cells stop proliferating and enter G1/G0 arrest. In the ovary, XX germ cells bypass G1/G0 arrest and instead enter the first phase of meiosis I from 13.5 dpc. Whilst it is hypothesised that errors in cell cycle control during development precede the formation of testicular germ cell tumours, the mechanism of cell cycle control at this time has not been thoroughly investigated. This project therefore sought to explore the mechanism of XY germ cell G1/G0 arrest using several approaches. Although cell cycle regulation for somatic cells is well established, we know very little regarding germ cell control of this process. Therefore my first aim was to profile this machinery at the transcript level using a cell cycle cDNA array. Purified populations of germ cells were isolated both before and after sex differentiation and expression of 112 cell cycle related genes was assessed. From this study a comprehensive network governing apoptosis and calcium signalling that was common to both XX and XY germ cells was observed. Importantly, the retinoblastoma family and cyclin dependent kinase inhibitor p21 was implicated in the regulation of G1/G0 arrest in XY germ cells. Lastly, XX germ cells displayed a down-regulation of genes involved in both G1 and G2 phases of the cell cycle consistent with their progression past G1 phase. This study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors for future investigation in order to understand cases of aberrant cell cycle control in these specialised cells. In order to investigate several candidate genes identified within the cell cycle array, I next sought to generate a germ cell-specific Cre recombinase mouse model for use in conditional knockout studies. As current Cre lines lack specificity or appropriate temporal expression, we used the germ cell-specific regions of the fragilis promoter to drive Cre expression during germ cell specification. Eleven founder lines were generated using this construct and four were analysed using a reporter line. Although we have not achieved germ cell expression from these lines to date, analysis continues in order to identify an invaluable new tool for germ cell research. Following the implication of the retinoblastoma family in XY germ cell G1/G0 arrest, I next investigated the role of RB in these cells using the Rb null mutant. RB is a known cell cycle suppressor that controls this process in many cell types and, subsequently, mice homozygous for the Rb deletion die in utero at 14.5 dpc. Using this model we analysed developing gonads from 14.5 – 16.5 dpc using ex vivo culture techniques. At 14.5 dpc when wild type germ cells have arrested, proliferating germ cells were detected in the absence of Rb using proliferation marker Ki67. This proliferation was accompanied by a slight increase in germ cell number at 14.5 dpc, however, two days later at 16.5 dpc germ cell numbers were slightly decreased in the Rb-/- testes. During this time we could also detect increased expression of other RB family members p107 and p130, suggesting that these factors may compensate for the loss of Rb in the germ line. This investigation has implicated RB in the regulation of XY germ cell G1/G0 arrest and will form the basis for future work aimed at understanding the initiation of this cell cycle state. In addition to RB, a lesser-known transcription factor was also investigated in the initiation and maintenance of XY germ cell G1/G0 arrest. The high mobility group box transcription factor 1 (HBP1) suppresses proliferation and promotes differentiation in various cell types and was recently identified within the XY germ cells at the appropriate time of sex differentiation. In my analysis two Hbp1 transcripts were identified within the XY germ cells that display different sub-cellular localisations in vitro. Next, Hbp1-LacZ reporter lines were generated to aid in understanding the germ cell-specific regulation of these transcripts and lastly, I analysed the genetrap mutation for Hbp1. Surprisingly, this model revealed no aberrations to germ cell-cell cycle control during development. In summary, I have performed the first comprehensive study of the cell cycle machinery utilised by germ cells as they undergo the first stages of sex differentiation. Using loss-of-function models I was able to implicate the cell cycle regulator RB specifically in XY germ cell G1/G0 arrest and, conversely, demonstrate that the transcription factor HBP1 is not required for this process.
156

Significance of MAD2 in mitotic checkpoint control and cisplatin sensitivity of testicular germ cell tumour cells /

Fung, Ka-lai. January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2007. / Also available online.
157

Germline CDKN2A/ARF alterations in human melanoma /

Hashemi, Jamileh, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 5 uppsatser.
158

Intestinal cell kinetics : modulation caused by age, gender and microbial status in rats and mice : an experimental study in germfree, conventional and Lactobacillus rhamnosus GG or Clostridium difficile, mono-associated animals /

Banasaz, Mahnaz, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 4 uppsatser.
159

Influence of the microflora on gastrointestinal nitric oxide generation : studies in newborn infants and germ-free animals /

Sobko, Tanja, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
160

Analysis of interactions between the germline RNA helicases (GLHs) and their regulators KGB-1 and CSN-5 in Caenorhabditis elegans

Orsborn, April Marie, January 2006 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. Includes bibliographical references.

Page generated in 0.049 seconds