• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemistry and Corrosion Mechanisms of Steels Embedded in High-density Slag Concrete for Storage of Used Nuclear Fuel

Nadarajah, Parthiban 15 December 2011 (has links)
The chemistry and corrosion mechanisms associated with reduced sulfur compounds such as calcium sulfide, present in ground granulated blast-furnace slag (GGBFS), have been studied in high-density concrete, mortar and simulated pore-water environments. The high-density concrete and mortar samples were produced to replicate the high-density GGBFS concrete, in the dry storage containers (DSCs), used for radiation shielding from used nuclear fuel. Electrochemical measurements on embedded steel electrodes in high-density GGBFS concrete and mortar samples, showed that sulfide is capable of consuming oxygen to create a stable, reducing environment, though not in all cases, and the high-frequency electrolyte resistance increases with hydration time. Ion chromatography on simulated pore-water environments determined that thiosulfate is quite kinetically stable as a sulfide oxidation product and magnetite is capable of oxidizing sulfide. Microscopy has also been used to provide visual evidence of GGBFS hydration and elemental quantification of the hydrating microstructure in different environments.
2

Chemistry and Corrosion Mechanisms of Steels Embedded in High-density Slag Concrete for Storage of Used Nuclear Fuel

Nadarajah, Parthiban 15 December 2011 (has links)
The chemistry and corrosion mechanisms associated with reduced sulfur compounds such as calcium sulfide, present in ground granulated blast-furnace slag (GGBFS), have been studied in high-density concrete, mortar and simulated pore-water environments. The high-density concrete and mortar samples were produced to replicate the high-density GGBFS concrete, in the dry storage containers (DSCs), used for radiation shielding from used nuclear fuel. Electrochemical measurements on embedded steel electrodes in high-density GGBFS concrete and mortar samples, showed that sulfide is capable of consuming oxygen to create a stable, reducing environment, though not in all cases, and the high-frequency electrolyte resistance increases with hydration time. Ion chromatography on simulated pore-water environments determined that thiosulfate is quite kinetically stable as a sulfide oxidation product and magnetite is capable of oxidizing sulfide. Microscopy has also been used to provide visual evidence of GGBFS hydration and elemental quantification of the hydrating microstructure in different environments.

Page generated in 0.0185 seconds