• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An evaluation of visitor decisions regarding alternative transportation in Glacier National Park

Baker, Melissa Lynn. January 2008 (has links)
Thesis (Ph. D.)--University of Montana, 2008. / Title from title screen. Description based on contents viewed May 4, 2009. Includes bibliographical references (p. 124-134).
2

A phytosociological study of Glacier National Park, Montana, U.S.A., with notes on the syntaxonomy of alpine vegetation in Western North America

Damm, Christian. January 2001 (has links)
Göttingen, Univ., Diss., 2001. / Dateiformat: zip, Dateien im PDF-Format. Computerdatei im Fernzugriff.
3

A phytosociological study of Glacier National Park, Montana, U.S.A., with notes on the syntaxonomy of alpine vegetation in Western North America

Damm, Christian. January 2001 (has links)
Göttingen, Universiẗat, Diss., 2001. / Dateiformat: zip, Dateien im PDF-Format.
4

Glacier Inventories and Change in Glacier National Park

Brett, Melissa Carrie 05 March 2018 (has links)
Glacier National Park, in northwestern Montana, is a unique and awe-inspiring national treasure that is often used by the media and public-at-large as a window into the effects of climate change. An updated inventory of glaciers and perennial snowfields (G&PS) in the Park, along with an assessment of their change over time, is essential to understanding the role that glaciers are playing in the environment of this Park. Nine inventories between 1966 and 2015 were compiled to assess area changes of G&PS. Over that 49-year period, total area changed by nearly -34 ± 11% between 1966 and 2015. Volume change, determined from changes in surface topography for nine glaciers, totaling 8.61 km² in area, was +0.142 ± 0.02 km³, a specific volume loss of -16.3 ± 2.5m. Extrapolating to all G&PS in the Park in 1966 yields a park-wide loss of -0.660 ± 0.099 km³. G&PS have been receding in the Park due to warming air temperatures rather than changes in precipitation, which has not changed significantly. Since 1900, air temperatures in Glacier National Park have warmed by +1.3 C°, compared to +0.9 C° globally. Spatially, G&PS at lower elevations and on steeper slopes lost relatively more area than other G&PS.
5

Frost heaving and surface clast movement in turf-banked terraces, Eastern Glacier National Park, Montana /

Sawyer, Carol Frances. January 1900 (has links)
Thesis (Ph. D.)--Texas State University-San Marcos, 2007. / Vita. Appendices: leaves 178-213. Includes bibliographical references (leaves 214-234).
6

Prove It climate change films and the skeptic /

Seyler, Amber Dawn. January 2009 (has links) (PDF)
Thesis (MFA)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: William Neff. I'm here in Glacier... is a DVD attached to the thesis. Includes bibliographical references (leaf 27).
7

"Blackfeet belong to the mountains" Blackfeet relationships with the Glacier National Park landscape and institution /

Craig, David R. January 2008 (has links)
Thesis (M.S.)--University of Montana, 2008. / Description based on contents viewed Oct. 6, 2008; title from title screen. Includes bibliographical references (p. 167-174).
8

Responses of western toads (Bufo boreas) to changes in terrest[r]ial habitat resulting from wildfire

Guscio, Charles Gregory. January 2007 (has links)
"Professional paper presented in partial fulfillment of the requirements for the degree of Master of Science in Wildlife Biology, the University of Montana, Missoula, MT, spring 2007." / Title from PDF title page (viewed Aug. 20, 2007). Includes bibliographical references (p. 15-20).
9

Plant Successional Patterns at Sperry Glacier Foreland, Glacier National Park, MT, USA

Schulte, Ami Nichole 12 June 2023 (has links)
Regional and local changes in the climate have been driving rapid glacial retreat in many glaciers since the Little Ice Age. This retreat provides a unique opportunity to study succession across the chronosequences of glacier forelands. Patterns of plant colonization and succession on terrain exposed by retreating glaciers give insight into factors influencing alpine ecosystem change and recovery. Understanding these patterns and processes is important for conserving alpine landscapes and flora as glaciers disappear. This study sought to investigate how various biotic and abiotic factors influence plant successional patterns in the dynamic alpine environment of Sperry Glacier, a Little Ice Age, mid-latitude cirque glacier in Glacier National Park, Montana. Through field data collection, additional Geographic Information System (GIS) derived variables, and subsequent geostatistical analysis, I specifically assessed: (1.) vegetative trends (percent cover, species richness, Shannon's diversity, species evenness, composition, and species turnover) over a 170-year chronosequence, and (2.) vegetative trends over field and GIS-derived site conditions (e.g., surface fragmentation, concavity, flow accumulation, and solar irradiance). Sixty-one plots (each 8 square meters) were placed throughout the glacier foreland using a random sample stratified by terrain date. Percent cover, species richness, Shannon's diversity, and species evenness were calculated for each plot. All sampled vegetation was identified with taxonomic resolution down to species whenever possible. I assessed vegetative trends across terrain age ranges using Kruskal-Wallis and Dunn's tests. I used two models, generalized linear models (GLMs) and Classification and Regression Trees (CARTs), to assess field and GIS-derived biophysical correlates (e.g., surface fragmentation, concavity, terrain variables, and solar irradiance with vegetative trends), followed by Kruskal-Wallis tests, Dunn's tests, and scatterplots. Species richness and vegetation cover were greater on older terrain. Plant composition changed over terrain age, with Penstemon ellipticus favoring older terrain and Boechera lemmonii favoring moderately aged terrain. Moderate drainage and concave plots, which were important in the GLMs, explained increased species richness and Shannon's diversity across different site conditions. The CARTs were able to predict species richness, vegetation cover, Shannon's diversity, and species evenness with surface fragment sized from gravel to cobble, topographic position index, and flow accumulation. These findings show that both temporal and biophysical site conditions influence successional trends across the foreland, though different vegetation measures are most influenced differently. / Master of Science / Regional and local changes in the climate have been driving rapid glacial retreat in many glaciers since the Little Ice Age. This retreat provides a unique opportunity to study succession across glacier foreland terrain that has been uncovered for different lengths of time. Patterns of plant colonization and succession on terrain exposed by retreating glaciers give insight into factors influencing alpine ecosystem change and recovery. Understanding these patterns and processes is important for conserving alpine landscapes and flora as glaciers disappear. This study sought to investigate how various biotic and abiotic factors influence plant successional patterns in the dynamic alpine environment of Sperry Glacier, a Little Ice Age, mid-latitude glacier in Glacier National Park, Montana. Through field data collection, additional Geographic Information System (GIS) derived variables, and subsequent geostatistical analysis, I specifically assessed: (1.) vegetative trends (percent cover, species richness, Shannon's diversity, species evenness, composition, and species turnover) over terrain uncovered between zero and 170-year, and (2.) vegetative trends over field and GIS-derived site conditions (e.g., surface fragmentation, concavity, flow accumulation, and solar irradiance). Sixty-one plots (each 8 square meters) were randomly placed within each terrain age range throughout the glacier foreland. Percent cover, species richness, Shannon's diversity, and species evenness were calculated for each plot. Shannon's diversity is a measurement of a community's diversity and uses both species richness and evenness to calculate diversity. All sampled vegetation was identified with taxonomic resolution down to species whenever possible. I assessed vegetative trends across terrain age using several statistical comparison tests. I used two types of statistical models to assess field and GIS-derived biophysical correlates (e.g., surface fragmentation, concavity, terrain variables, and solar irradiance with vegetative trends), followed by comparison tests and scatterplots. Species richness and vegetation cover were greater on older terrain. Plant composition changed over terrain age, with the species Penstemon ellipticus (rocky ledge penstemon) favoring older terrain and Boechera lemmonii (Lemmon's rockcress) favoring moderately aged terrain. Moderate drainage and concave plots explained increased species richness and Shannon's diversity across different site conditions. Species richness, vegetation cover, Shannon's diversity, and species evenness could be predicted with surface fragments sized from gravel to cobble, topographic position index, and flow accumulation. These findings show that both temporal and biophysical site conditions influence successional trends across the foreland, though different vegetation measures are most influenced differently.
10

Spatio-Temporal Vegetation Change as related to terrain factors at two Glacier Forefronts, Glacier National Park, Montana

Lambert, Callie Brooke 01 February 2019 (has links)
Glacier retreat is considered a clear sign of global climate change. Although a rich body of work has documented glacial response to climate warming trends, comparatively little research has assessed vegetation change in recently deglaciated areas. In this study, we assess vegetation change at two glacier forefronts in Glacier National Park, Montana, through remote sensing analysis, fieldwork validation, and statistical modelling. The research objectives were to: 1) quantify the spatial and temporal patterns of landcover change of five classes"ice, rock, tree, shrub, and herbaceous at the two glacier forefronts in Glacier National Park, and 2) determine the role of selected biophysical terrain factors (elevation, slope, aspect, solar radiation, flow accumulation, TWI, and geology) on vegetation change at the deglaciated areas. Landsat imagery of the study locations in 1991, 2003, and 2015 were classified and validated using ground truth points and visual interpretation for accuracy. Overall accuracies were above 75% for all classified images. To identify biophysical correlates of change, we used generalized linear mixed models with non-vegetated surfaces to vegetation (code=1) or stable non-vegetation class (code=0) as a binary response variable. Results revealed elevation, slope, TWI, geology, and aspect to be associated with increased vegetation over time at Jackson Glacier forefront, whereas elevation, slope, solar radiation, and geology were significant at Grinnell Glacier forefront. New case studies on vegetation change in recently deglaciated regions can deepen our knowledge about how glacier retreat at local scales results in recharged ecosystem dynamics. / Master of Science / Glacier retreat is considered a clear sign of global climate change. Although glaciers are retreating globally, comparatively little research has assessed how vegetation changes in recently deglaciated areas. The research objectives were to: 1) quantify patterns of landcover change of five classes—ice, rock, tree, shrub, and herbaceous at two glacier forefronts in Glacier National Park, and 2) determine the environmental and terrain factors that affect vegetation change at the deglaciated areas. Landsat imagery of the study locations in 1991, 2003, and 2015 were classified and validated using ground truth points and visual interpretation for accuracy. To identify terrain and environmental factors that influence change, we modeled change from nonvegetated surfaces to vegetation (code=1) and the stable non-vegetation class (code=0). Results revealed elevation, slope, topographic moisture, geology, and aspect to be associated with increased vegetation over time at Jackson Glacier forefront. Elevation, slope, solar radiation, and geology were significant at Grinnell Glacier forefront, indicating some geographic differences in important factors. New case studies on vegetation change in recently deglaciated regions can deepen our knowledge about how glacier retreat at local scales results in recharged ecosystem dynamics. This study provides further insight on the future of alpine ecosystems as they respond to global climate change and a compelling new perspective on the future of the Park. Additionally, we demonstrate the benefits of using remote sensing applications to study land cover change as a proxy for vegetation colonization, especially in remote mountainous environments.

Page generated in 0.1227 seconds