261 |
Multifunctionalities Of Telllurite And Borate Based Glasses Comprising Nano/Micro Crystals Of Tetragonal Tungsten Bronze-Type Ferroelectric OxidesAhamad, M Niyaz 10 1900 (has links)
Transparent glasses embedded with TTB structured ferroelectric nano/micro crystals (K3Li2Nb5O15, Ba5Li2Ti2Nb8O30) were fabricated in various tellurite and borate based glass matrices and characterized for their physical properties.
Nanocrystals of K3Li2Nb5O15 were successfully grown inside tellurite glass matrix via conventional heat-treatment route. Eventhough, tellurite glasses preferentially crystallize only on the surface, bulk uniform crystallization was achieved in the (100-x) TeO2 - x(1.5K2O-Li2O-2.5Nb2O5) system. Heat capacity studies revealed them to be thermodynamically less fragile than any other tellurite glasses ever reported in the literature. Pyroelectric and ferroelectric effects as well as second harmonic generation were demonstrated for the heat treated (glass nanocrystal composites) samples in this system.
The conventional method of melt-quenching of constituent oxides could not yield Ba5Li2Ti2Nb8O30 crystallites. So, Ba5Li2Ti2Nb8O30 microcrystals were successfully formed in tellurite glass matrix by mixing pre-reacted Ba5Li2Ti2Nb8O30 ceramic powders with TeO2. The glass transition temperature was found to be the highest ever reported and this system was kinetically strong based on the fragility parameter. Dielectric studies revealed a frequency and temperature independent nature of the dielectric constant and very low dielectric loss. The SHG measurement which was carried out as a function of temperature demonstrated the incidence of blue second harmonic generation in the microcrystals present in the glass matrix.
Ba5Li2Ti2Nb8O30 nanocrystals were successfully crystallized in the transparent glass system (100-x)Li2B4O7 – x(Ba5Li2Ti2Nb8O30). Dielectric constant increased while the dielectric loss decreased with the increase in Ba5Li2Ti2Nb8O30 content. Nuclear magnetic resonance spectroscopic studies were carried out to have an insight into the structure of this system. Transmission studies and refractive index measurements were performed and various optical parameters were calculated.
Dielectric and transport properties were studied for the glasses and glass nano/microcrystal composites of all the systems reported in this thesis. Li+ ion was found to be responsible for conduction in all these systems.
Evolution of self-organized nanopatterns of K3Li2Nb5O15 crystals has been demonstrated in the glass system (100-x) TeO2 - x(1.5K2O-Li2O-2.5Nb2O5) by excimer laser irradiation. The second harmonic signal observed by the Maker fringe technique has been attributed to the presence of well-aligned nano-sized grating structures in the glass system. Glasses belonging to the systems TeO2-K3Li2Nb5O15, TeO2-Ba5Li2Ti2Nb8O30 and V2Te2O9 undergo spinodal decomposition on exposing to KrF pulsed excimer laser. The spinodally phase separated structures were observed on all the surfaces of the samples. Ring shaped patterns were observed on several locations of the samples at higher frequency of laser pulses probably owing to the shock waves produced by the high intense laser beam. Line shaped patterns were found to originate on the sample surfaces when irradiated for longer periods.
|
262 |
Development Of Instrumentation For Electrical Switching Studies And Investigations On Switching And Thermal Behavior Of Certain Glassy ChalcogenidesPrashanth, S B Bhanu 04 1900 (has links)
The absence of long-range order in glassy chalcogenides provides the convenience of changing the elemental ratios and hence the properties over a wide range. The interesting properties exhibited by chalcogenide glasses make them suitable materials for Phase Change Memories (PCM) and other applications such as infrared optical devices, photo-receptors, sensors, waveguides, etc.
One of the most remarkable properties of chalcogenides is their electrical switching behavior. Reversible (threshold type) or irreversible (memory type) switching from a high resistance OFF state to a low resistance ON state in glassy chalcogenides occurs at a critical voltage called the threshold/switching voltage (VT). Investigations on the switching behavior and its composition dependence throw light on the local structural effects of amorphous chalcogenide semiconductors and also help us in identifying suitable samples for PCM applications.
Thermal analysis by Differential Scanning Calorimetry (DSC) has been extensively used in glass science, particularly for measurements of thermal parameters such as enthalpy of relaxation, specific heat change, etc., near glass transition. Quite recently, the conventional DSC has been sophisticated by employing a composite temperature profile for heating, resulting in the Temperature Modulated DSC (TMDSC) or Alternating DSC (ADSC). Measurements made using ADSC reveal thermal details with enhanced accuracy and resolution, and this has lead to a better understanding of the nature of glass transition. The thermal parameters obtained using DSC/ADSC are also vital for understanding the electrical switching behavior of glassy chalcogenides.
The motivation of this thesis was twofold: The first was to develop a novel, high voltage programmable power supply for electrical switching analysis of samples exhibiting high VT, and second to investigate the thermal and electrical switching behavior of certain Se-Te based glasses with Ge and Sb additives.
The thesis contains seven chapters:
Chapter 1:
This chapter provides an overview of amorphous semiconductors (a-SC) with an emphasis on preparation and properties of glassy chalcogenides. The various structural models and topological thresholds of a-SC are discussed with relations to the glass forming ability of materials. The electronic band models and defect states are also dealt with. The essentials of electrical switching behavior of chalcogenides are discussed suggesting the electronic nature of switching and the role of thermal properties on switching.
Chapter 2:
The second chapter essentially deals with theory and practice of the experimental techniques adopted in the thesis work. The details of the melt-quenching method of synthesizing glassy samples are provided. Considering the importance, the theory of thermal analysis by DSC & ADSC, are discussed in detail, highlighting the advantages of the latter method adopted in the thesis work. The instrumentation and electronics, developed and used for electrical switching analysis are also introduced at a block diagram level. Finally, the methods used for structural analysis are briefed.
Chapter 3:
This chapter is dedicated to the design and development details of the programmable High Voltage dc Power Supply (HVPS: 1750 V, 45 mA) undertaken in the thesis work. The guidelines used for power supply topology selection, the specifications and block diagram of the HVPS are provided in that sequence. The operation of the HVPS is discussed using the circuit diagram approach. The details of software control are also given. The performance validations of the HVPS, undertaken through voltage & current regulation tests, step & frequency response tests are discussed. Finally, the sample-test results on the electrical switching behavior of representative Al20As16Te64 and Ge25Te65Se10 samples, obtained using both the current & voltage sweep options of the HVPS developed are illustrated.
Chapter 4:
Results of the thermally induced transitions governed by structural changes which are driven by network connectivity in the GexSe35-xTe65 (17 ≤ x ≤ 25) glasses, as revealed by ADSC experiments, are discussed in this chapter. It is found that the GexSe35-xTe65 glasses with x ≤ 20 exhibit two crystallization exotherms (Tc1 & Tc2), whereas those with x ≥ 20.5, show a single crystallization reaction upon heating (Tc). The glass transition temperature of GexSe35-xTe65 glasses is found to show a linear, but not-steep increase, indicating a progressive and not an appreciable build-up in network connectivity with Ge addition.
The exothermic reaction at Tc1 has been found to correspond to the partial crystallization of the glass into hexagonal Te and the reaction at Tc2 is associated with the additional crystallization of rhombohedral Ge-Te phase. It is also found that the first crystallization temperature Tc1 of GexSe35-xTe65 glasses of lower Ge concentrations (with x ≤ 20), increases progressively with Ge content and eventually merges with Tc2 at x = 20.5 (<r> = 2.41); this behavior has been understood on the basis of the reduction in Te-Te bonds of lower energy and an increase in Ge-Te bonds of higher energy, with increasing Ge content.
Chapter 5:
This chapter deals with the electrical switching studies on GexSe35-xTe65 (17 ≤ x ≤ 25) glasses, with an emphasis on the role of network connectivity/rigidity on the switching behavior. It is found that the switching voltage (VT) increases with Ge content, exhibiting a sudden jump at x=20, the Rigidity Percolation Threshold (RPT) of the system. In addition, the switching behavior changes from memory to threshold type at the RPT and the threshold switching is found to be repetitive for more than 1500 cycles.
Chapter 6:
In this chapter, the results of thermal analysis (by ADSC) and electrical switching investigations on SbxSe55-xTe45 (2 ≤ x ≤ 9) are discussed. It is found that the addition of trivalent Sb contributes very meagerly to network growth but directly affects the structural relaxation effects at Tg. Further, SbxSe55-xTe45 glasses exhibit memory type electrical switching, which is understood on the basis of poor thermal stability of the samples. The metallicity factor is observed to outweigh the network factor in the composition dependence of VT of SbxSe55-xTe45 glasses.
Chapter 7:
The chapter 7 summarizes the results obtained in the thesis work and provides the scope for future work.
The references are cited in the text along with the first author’s name and year of publication, and are listed at the end of each chapter in alphabetical order.
|
263 |
Studies On Phosphate Glasses With Nasicon-Type ChemistrySobha, K C 06 1900 (has links) (PDF)
No description available.
|
264 |
Electrical Switching And Thermal Studies On Certain Ternary Telluride Glasses With Silicon Additive And Investigations On Their Suitability For Phase Change Memory ApplicationsAnbarasu, M 10 1900 (has links)
The Phase Change Memories (PCM) based on chalcogenide glasses are being considered recently as a possible replacement for conventional Non Volatile Random Access Memories (NVRAM). The main advantages of chalcogenide phase change memories are their direct write/overwrite capability, lower voltages of operation, large write/erase cycles, easiness to integrate with logic, etc. The phase change random access memories work on the principle of memory switching exhibited by chalcogenide glasses during which a local structural change (between amorphous and crystalline states) occurs due to an applied electric field.
The development of newer phase change materials for NVRAM applications is based on synthesizing newer glass compositions and investigating their electrical switching characteristics by applying current/voltage pulses of different waveforms. The thermal studies on chalcogenide glasses which provide information about thermal stability, glass forming ability, etc., are also important while selecting a chalcogenide glass for PCM applications.
The present thesis work deals with electrical switching and thermal studies on certain silicon based ternary telluride glasses (As-Te-Si, Ge-Te-Si and Al-Te-Si). The effect of network topological thresholds on the composition dependence of switching voltages and thermal parameters such as glass transition temperature, specific heat capacity, non-reversing enthalpy, etc., of these glasses has been investigated.
The first chapter of the thesis provides an introduction to various properties of chalcogenide glasses, including their applications in phase change memories. The fundamental aspects of amorphous solids such as glass formation, glass transition, etc., are presented. Further, the concepts of rigidity percolation and self organization in glassy networks and the influence of local structural effects on the properties of glassy chalcogenides are discussed. Also, a brief history of evolution of phase change memories is presented.
The second chapter deals with the experimental techniques employed in this thesis work; for sample preparation and for electrical switching studies, Alternating Differential Scanning Calorimetry (ADSC), Raman spectroscopy, NMR spectroscopy, etc.
The third chapter discusses the electrical switching and thermal studies on As30Te70-xSix (2 ≤ x ≤ 22) and As40Te60-xSix (2 ≤ x ≤ 17) glasses. The composition dependence of electrical switching voltage (VT) and thermal parameters such as glass transition temperature (Tg), crystallization temperature (Tc), thermal stability (Tc-Tg), etc., reveals the occurrence of extended rigidity percolation and chemical thresholds in As30Te70-xSix and As40Te60-xSix glasses.
Chapter 4 presents the electrical switching and thermal studies on Ge15Te85-xSix glasses (2 ≤ x ≤ 12). These glasses have been found to exhibit memory type electrical switching. While Ge15Te85-xSix glasses with x ≤ 5 exhibit a normal electrical switching, an unstable behavior is seen in the I-V characteristics of Ge15Te85-xSix glasses with x > 5 during the transition to ON state. Further, the switching voltage (VT) and initial resistance (R) are found to increase with addition of Si, exhibiting a change in slope at the rigidity percolation threshold of the Ge15Te85-xSix system. The ADSC studies on these glasses indicate the presence of an extended stiffness transition and a thermally reversing window in Ge15Te85-xSix in the composition range of 2 ≤ x ≤ 6.
The fifth chapter deals with electrical switching investigations, thermal and structural studies on Al15Te85-xSix glasses (2 ≤ x ≤ 12). These glasses have been found to exhibit two crystallization reactions (Tc1 and Tc2) for compositions with x < 8 and a single stage crystallization is seen for compositions above x = 8. Also, a trough is seen in the composition dependence of non-reversing enthalpy (ΔHNR), based on which it is proposed that there is a thermally reversing window in Al15Te85-xSix glasses in the composition range 4 ≤ x ≤ 8. Further, Al15Te85-xSix glasses are found to exhibit a threshold type electrical switching at ON state currents less than 2 mA. The start and the end of the thermally reversing window seen in the thermal studies are exemplified by a kink and saturation in the composition dependence of switching voltages respectively. 27Al Solid State NMR measurements reveal that in Al15Te85-xSix glasses, Al atoms reside in 4-fold as well as 6-fold coordinated environments. Unlike in Al-As-Te glasses, there is no correlation seen between the composition dependence of the fraction of 4-fold and 6-fold coordinated aluminum atoms and the switching behavior of Al-Te-Si samples.
Chapter 6 provides a comparison of the properties of the three glassy systems studied (As-Te-Si, Ge-Te-Si and Al-Te-Si), made to identify the system better suited for phase change memory applications. It is found that the Ge-Te-Si glassy system has better electrical/thermal properties for phase change memory applications.
The seventh chapter describes easily reversible SET-RESET processes in Ge15Te83Si2 glass which is a promising candidate for phase change memory applications. This sample exhibits memory switching at a comparatively low threshold electric field (Eth) of 7.3 kV/cm. The SET and RESET processes have been achieved with 1 mA triangular current pulse for the SET process and 1 mA rectangle pulse (of 10 msec width) for RESET operation respectively. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse. About 6.5x104 SET-RESET cycles have been achieved without any damage to the device.
In chapter 8, results of in-situ Raman scattering studies on the structural changes occurring during the SET and RESET processes in Ge15Te83Si2 sample, are presented. It is found that the degree of disorder in the glass is reduced from OFF to SET state. The local structure of the sample under RESET condition is similar to that in the OFF state. The Raman results are found to be consistent with the switching results which indicate that the Ge15Te83Si2 glass can be SET and RESET easily. Further, Electron Microscopic studies on switched samples indicate the formation of nanometer sized particles of cSiTe2.
A summary of the results obtained and the scope for future work are included in the chapter 9 of the thesis.
|
265 |
Propriedades estruturais e óticas de vidros germanoniobofosfato dopados com íons terras raras / Structural and optical properties of rare earth-doped germanoniobophosphate glassesMello, Laura Bissoli de, 1987- 22 August 2018 (has links)
Orientadores: Ítalo Odone Mazali, Fernando Aparecido Sigoli / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-22T16:11:21Z (GMT). No. of bitstreams: 1
Mello_LauraBissolide_M.pdf: 5917459 bytes, checksum: 84ba21daf327140c83f0038b51e81366 (MD5)
Previous issue date: 2013 / Resumo: No presente trabalho, buscou-se avaliar as mudanças promovidas pela substituição parcial e total de TiO2 por GeO2 em vidros niobofosfato co-dopados com Er/Yb previamente estudados pelo grupo. Uma série de sistemas vítreos de composições 20Na2O-30Nb2O5-(5-y-z)Al2O3-30P2O5-(15-x)TiO2-xGeO2-yEr2O3-zYb2O3 com x = (0; 5; 10; 15), y = (0; 1), z = (0; 2) mol%, obtidos por fusão-resfriamento, foram investigados quanto à sua estrutura, propriedades ópticas e de luminescência. Análises de FTIR e Raman sugerem que a estrutura de vidro não se altera de forma significativa ao longo da série de substituições de TiO2 por GeO2 e, consequentemente, a coordenação dos elementos devem se manter semelhantes. Na literatura reporta-se que íons Ge têm preferencialmente coordenação 4; entretanto, nos sistemas estudados, sugere-se que o Ge apresente coordenação 6, semelhante à do Ti substituído. Esta proposição é confirmada pelos espectros de P MAS-NMR, os quais indicam que os vidros possuem cadeias majoritariamente do tipo pirofosfato, sem mudança no grau de polimerização com as substituições. Também pôde-se confirmar a manutenção da coordenação com os resultados obtidos da fotoluminescência dos sistemas vítreos co-dopados, nos quais os tempos de vida de emissão do íon Er (5 ms) e parâmetros de intensidade de Judd-Ofelt dos diferentes sistemas vítreos são muito semelhantes entre si, e o processo de emissão de upconversion dos vidros dopados envolve 1,5 fótons. Quanto ao comportamento térmico, observa-se que os vidros contendo maior proporção de GeO2 têm maior estabilidade térmica e são, portanto, mais resistentes à desvitrificação quando comparado às composições contendo mais TiO2 / Abstract: The aim of this work was to study the changes promoted by partial and complete substitution of TiO2 by GeO2 in Er/Yb co-doped niobophosphate glasses previously studied by the group. A series of glasses with composition 20Na2O-30Nb2O5-(5-y-z)Al2O3-30P2O5-(15-x)TiO2-xGeO2-yEr2O3-zYb2O3 with x = (0; 5; 10; 15), y = (0; 1), z = (0; 2) mol%, prepared by quenching-melt process, were investigated with respect to their structural, optical and luminescence properties. FTIR and Raman analysis suggest that the glassy chains didn¿t suffer relevant modifications with the TiO2 substitutions by GeO2 and as a consequence, the coordination of the ions weren¿t affected. The coordination of the Ge ion is reported as mainly thetraedral; however, in the present work, is suggested that Ge ion has an octahedral coordination, as well the TiO2 substituted. This proposition is confirmed by the P MAS-NMR spectra, which showed mainly pyrophosphate chains of the different glasses, without changings in their polymerization after the substitutions. The similar ions coordination was also confirmed by the photoluminescence behavior of the different co-doped samples, which showed equal Er emission decay lifetimes (5 ms) and Judd-Ofelt intensity parameters, and the upconversion emission process involved 1,5 photons. Regarding the thermal behavior, it is noted that the glasses containing higher proportions of GeO2 have higher thermal stability and are therefore more resistant to devitrification when compared to compositions containing more TiO2 / Mestrado / Quimica Inorganica / Mestra em Química
|
266 |
Glass Forming Ability And Stability : Bulk Zr-Based And Marginal Al-Based GlassesBasu, Joysurya 10 1900 (has links) (PDF)
No description available.
|
267 |
Glass Forming Ability, Magnetic Properties, and Mechanical Behavior of Iron-Based and Cobalt-Based Metallic GlassesVeligatla, Medha 12 1900 (has links)
Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. In particular, low coercivity and high permeability of iron and cobalt based metallic glass compositions could potentially lead to extensive commercial use as magnetic heads, transformer cores, circuits and magnetic shields. In the current study, few metallic glass compositions were synthesized by systematically varying the iron and cobalt content. Thermal analysis was done and included the measurement of glass transition temperature, crystallization temperature, and the enthalpies of relaxation and crystallization. Magnetic properties of the alloys were determined including saturation magnetization, coercivity, and Curie temperature. The coercivity was found to decrease and the saturation magnetization was found to increase with the increase in iron content. The trend in thermal stability, thermodynamic properties, and magnetic properties was explained by atomic interactions between the ferromagnetic metals and the metalloids atoms in the amorphous alloys. Mechanical behavior of iron based metallic glasses was evaluated in bulk form as well as in the form of coatings. Iron based amorphous powder was subjected to high power mechanical milling and the structural changes were evaluated as a function of time. Using iron-based amorphous powder precursor, a uniform composite coating was achieved through microwave processing. The hardness, modulus, and wear behavior of the alloys were evaluated using nano-indentation.
|
268 |
Singing wine glassesParupudi, Aarti January 1900 (has links)
Master of Science / Computing and Information Sciences / Daniel A. Andresen / One among the many inventions of Benjamin Franklin is the Glass Armonica, a musical instrument whose sound source was a series of resonating glass vessels. However, the Irish musician Richard Pockrich is typically credited as the first to play an instrument composed of glass vessels, called the Glass Harp in 1741, by rubbing his fingers around the rims.
In this project “Singing Wine Glasses”, the principle of Franklin’s glass armonica is demonstrated with a wine glass. One hand is used to hold the glass steady at the base. The rim of glass is gently pressed with a moistened finger of the other hand and drawn in a circle around. When the pressure and amount of moisture are just right, the slight friction between the finger and the rim of glass causes vibrations in the sides of the glass. At a particular frequency, called the resonant frequency, the sides of the glass will vibrate most easily. The resonant frequency of wine glasses is typically within the range of human hearing (20-20,000 Hz), so the resulting resonant vibration is heard as a tone. The glass starts to sing when the vibration gets the molecules moving at their natural frequency. The resonant frequency changes with the amount of water filled in the glass.
This android application deals with virtual glasses that serve the purpose of wine glasses filled with different amounts of water. Swiping on the glass edges would produce music, as per Franklin’s principle. The users would be free to select the number of glasses they want to play, and the amount of water-level in each glass. This application would also come with an enhanced feature of sustaining a particular note until the finger is released from the glass.
|
269 |
Thermal Stability of Amorphous MoSiZr Thin FilmsKaplan, Maciej January 2016 (has links)
Metallic glass is a class of materials which have a disordered structure of atoms, due to this, glasses lack grains and grain boundaries, which are present in their crystalline counterparts. Metallic glasses have many interesting properties worth investigating, such as high corrosion resistance or high mechanical strength. However, metallic glasses are metastable and will therefore crystallise if heated above the crystallisation temperature. MoSiZr alloys have been studied and to gain knowledge of how the composition affects the crystallisation temperature, which enables further improvement of thermal stability. Crystallisation temperatures of the MoSiZr alloys were investigated by heat treatments in vacuum and ex-situ X-ray diffraction and X-ray reflectivity analysis. The highest thermal stability of the alloys was exhibited by M48Si48Zr4, Mo43Si50Zr7, Mo50Si40Zr10 and Mo45Si43Zr12, they remained amorphous after heat treatment at 1073 K. The resulting crystalline phases are Mo3Si, Mo5Si3 and ZrO2. Oxidation of Zr in the alloys is present only when the Zr content is at least 10 at%, crystallisation is otherwise mainly driven by formation of Mo3Si. Further improvement of the thermal stability is possible by introducing new alloying elements at the cost of those that promote crystallisation. Keeping the content of Zr below 10 at% is of great importance to prevent oxidation.
|
270 |
Lead-Salt Quantum Dot Doped Glasses for PhotonicsAuxier, Jason Michael January 2006 (has links)
I present photonics applications of PbS quantum-dot-doped (QD-doped) glasses. The dissertation consists of two major parts: bulk material applications (Cr:forsterite laser modelocking, bleaching dynamics, optical gain, and photoluminescence) and the fabrication of QD-doped ion-exchanged waveguides.When this work began, these PbS QD-doped glasses were the state-of-the-art in QD glasses due to their narrow size distribution. Modelocking of a Cr:forsterite laser using this glass as a saturable absorber had been demonstrated, with little understanding of the dynamics. This work began by studying the dynamics of the saturable absorber to explain the ps-pulse width.In the bulk measurements, I functioned as secondary researcher. In the laser modelocking and bleaching measurements, my contribution was laser cavity alignment, sample preparation, collecting autocorrelation traces, and aiding in the setup and data collection for the bleaching measurements. On this work, I coauthored one refereed journal article in Applied Physics Letters [1] and one refereed conference paper [2], for which I am third and second author, respectively.For the gain measurements, I aided in the setup and data collection, whereas I set-up and took most of the luminescence data. The gain measurements resulted in one second-author refereed journal article in Applied Physics Letters [3] and I presented the luminescence results at CLEO2000 [4].I took the lead role in the waveguide fabrication and characterization and authored refereed journal articles in Applied Physics Letters [5], Journal of Applied Physics [6], and Journal of the Optical Society of America B [7]. I also presented an invited talk at Photonics West [8] and presented at CLEO2004 [9]. Additionally, I have been a coauthor of presentations at the Nanotechnology Symposium (2006), American Ceramic Society [10], and Photonics Europe (2006) [11]. A book chapter in The Photonics Handbook, 2nd edition [12] also discusses this work.The next step is to focus on reducing the waveguide losses. This requires new, circular wafers with better surface quality and glass homogeneity. I suggest using silver-film ion exchange followed by a field-assisted burial to eliminate the surface interaction.
|
Page generated in 0.0624 seconds