1 |
FPGA implementation of an enhanced digital detection algorithm for medium range RFID readers / Francois Dominicus MullerMuller, Francois Dominicus January 2008 (has links)
The School of Electrical, Electronic and Computer Engineering of the North-West University is conducting research about RFID (radio frequency identification) medium range reader systems for an international company, iPico. The focus area of the present research is the development of a robust tag detection algorithm for noisy environments.
During the past three years a digital detection algorithm was developed. This digital detection algorithm delivered significant improvements in detection of RFIDs over its analogue counterpart, especially in noisy environments. However, the digital detection algorithm was found to be very sensitive with regard to data rate deviations.
Although the latter algorithm improved the detection of RFIDs, ghost (absent) tags were now also detected. The objectives of this project are, to develop an enhanced detection algorithm which is less sensitive to frequency deviations and to eliminate the appearance of the so called ghost tags.
The proposed enhanced algorithm will be implemented on a FPGA (field programmable gate array), more specific the Altera Cyclone EP1CT144C6 FPGA. / Thesis (M.Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2009.
|
2 |
FPGA implementation of an enhanced digital detection algorithm for medium range RFID readers / Francois Dominicus MullerMuller, Francois Dominicus January 2008 (has links)
The School of Electrical, Electronic and Computer Engineering of the North-West University is conducting research about RFID (radio frequency identification) medium range reader systems for an international company, iPico. The focus area of the present research is the development of a robust tag detection algorithm for noisy environments.
During the past three years a digital detection algorithm was developed. This digital detection algorithm delivered significant improvements in detection of RFIDs over its analogue counterpart, especially in noisy environments. However, the digital detection algorithm was found to be very sensitive with regard to data rate deviations.
Although the latter algorithm improved the detection of RFIDs, ghost (absent) tags were now also detected. The objectives of this project are, to develop an enhanced detection algorithm which is less sensitive to frequency deviations and to eliminate the appearance of the so called ghost tags.
The proposed enhanced algorithm will be implemented on a FPGA (field programmable gate array), more specific the Altera Cyclone EP1CT144C6 FPGA. / Thesis (M.Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2009.
|
Page generated in 0.0755 seconds