1 |
Application of sensitivity and uncertainty analyses to linear time invariant compartmental modelsGazioglu, Suzan January 2002 (has links)
No description available.
|
2 |
The role of macro-zooplankton in the global carbon cycleMoriarty, Roisin January 2009 (has links)
No description available.
|
3 |
How do rates of carbon metabolism vary over a geological gradient, and how does this contribute to riverine greenhouse gas emissions?Olde, Louise January 2017 (has links)
Rivers and streams are increasingly recognised as important components in the global carbon cycle, and act as net sources of CO2 and CH4 to the atmosphere. However, the origins and controls over the fate of these greenhouse gases are still poorly constrained. This thesis firstly explores the production of CO2 and CH4 in the sediment of several rivers over a geological gradient (chalk, sand and clay), to investigate the magnitude and controls on production. It was found that, whilst there are some general patterns due to geology, variables such as organic carbon content are much better predictors of production of CO2 and CH4 and these can vary widely within a single reach. The response of production to temperature was found to be very constant across rivers and in both summer and winter, suggesting a uniform increase in production of both CO2 and CH4 with projected future climate change. However, production of CH4 was much more responsive to temperature change than was CO2, meaning a greater proportion of carbon is mineralized as CH4 under warmer conditions and indicating a positive feedback with global warming. In addition, the amount of CO2 and CH4 out-gassed from the rivers to the atmosphere was measured. It was found that the amount out-gassed could not be explained by local sediment respiration alone: CO2 out-gassing was consistently higher (and CH4 consistently lower) than that produced by the riverbed. Instead, CO2 out-gassing was under hydrological control, and was correlated with rainfall. The source of this was ingress from the surrounding catchment, with higher out-gassing during periods of high rainfall. This strong hydrological controls on CO2 emissions were however modulated by biological processes, as lower emissions were measured during the day than night; and the difference could be accounted for by local in-stream GPP.
|
4 |
Fate(s) of Injected CO₂ in a Coal-Bearing Formation, Louisiana, Gulf Coast Basin: Chemical and Isotopic Tracers of Microbial-Brine-Rock-CO₂ InteractionsShelton, Jenna Lynn January 2013 (has links)
Coal beds are one of the most promising reservoirs for geologic carbon dioxide (CO₂) sequestration, as CO₂ can strongly adsorb onto organic matter and displace methane; however, little is known about the long-term fate of CO₂ sequestered in coal beds. The "2800' sand" of the Olla oil field is a coal-bearing, oil and gas-producing reservoir of the Paleocene–Eocene Wilcox Group in north-central Louisiana. In the 1980s, this field, specifically the 2800' sand, was flooded with CO₂ in an enhanced oil recovery (EOR) project, with 9.0×10⁷m³ of CO₂ remaining in the 2800' sand after injection ceased. This study utilized isotopic and geochemical tracers from co-produced natural gas, oil and brine from reservoirs located stratigraphically above, below and within the 2800' sand to determine the fate of the remaining EOR-CO₂, examining the possibilities of CO₂ migration, dissolution, mineral trapping, gas-phase trapping, and sorption to coal beds, while also testing a previous hypothesis that EOR-CO₂ may have been converted by microbes (CO₂-reducing methanogens) into methane, creating a microbial "hotspot". Reservoirs stratigraphically-comparable to the 2800' sand, but located in adjacent oil fields across a 90-km transect were sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. The source field for the EOR-CO₂, the Black Lake Field, was also sampled to establish the δ¹³C-CO₂ value of the injected gas (0.9‰ +/- 0.9‰). Four samples collected from the Olla 2800' sand produced CO₂-rich gas with δ¹³C-CO₂ values (average 9.9‰) much lower than average (pre-injection) conditions (+15.9‰, average of sands located stratigraphically below the 2800' sand in the Olla Field) and at much higher CO₂ concentrations (24.9 mole %) than average (7.6 mole %, average of sands located stratigraphically below the 2800' sand in the Olla Field), suggesting the presence of EOR-CO₂ and gas-phase trapping as a major storage mechanism. Using δ¹³C values of CO₂ and dissolved organic carbon (DIC), CO₂ dissolution was also shown to be a major storage mechanism for 3 of the 4 samples from the Olla 2800' sand. Minor storage mechanisms were shown to be migration, which only affected 2 samples (from 1 well), and some EOR-CO₂ conversion to microbial methane for 3 of the 4 Olla 2800' sand samples. Since methanogenesis was not shown to be a major storage mechanism for the EOR-CO₂ in the Olla Field (CO₂ injection did not stimulate methanogenesis), samples were examined from adjacent oil fields to determine the cause of the Olla microbial "hot-spot". Microbial methane was found in all oil fields sampled, but indicators of methanogenesis (e.g. alkalinity, high δ¹³C-DIC values) were the greatest in the Olla Field, and the environmental conditions (salinity, pH, temperature) were most ideal for microbial CO₂ reduction in the Olla field, compared to adjacent fields.
|
5 |
The measurement and modelling of #delta#'1'3C in Irish oaksOgle, Neil January 1995 (has links)
No description available.
|
6 |
Authigenic carbonate burial and its impact on the global carbon cycle: a case study from late Devonian strata of the Western Canada Sedimentary BasinGazdewich, Sean 10 August 2020 (has links)
It has been hypothesized that authigenic carbonate minerals, formed within the pore spaces of marine siliciclastic formations during early diagenesis, may have had a substantial influence on the global carbon cycle, particularly in times of low oxygen in Earth history. According to this idea, alkalinity is generated via anaerobic organic matter degradation, resulting in carbonate oversaturation and the precipitation of low δ13C carbonate cements. If a substantial amount of 13C-depleted carbonate was sequestered in this authigenic sink, the δ13C of dissolved inorganic carbon (DIC) in the global ocean would be driven to more positive values without significant organic carbon burial - a signal which would be recorded in marine carbonates. Research presented herein tests this hypothesis from newly acquired lithostratigraphic and coupled stable carbon and oxygen isotope data of Upper Devonian limestone and black shale formations preserved within the Western Canada Sedimentary Basin. The Late Devonian includes a mass-extinction event, and is characterized by pervasive ocean anoxia and a dramatic reduction in platformal carbonate sediment deposition. As such, it has been hypothesized to represent an ideal time for the emergence of an active authigenic carbonate sink. Results show that both basinal shale (Besa River and Exshaw formations) and platform carbonates (Wabamun Group and its equivalents), record a δ13C signal that is within the expected range of Devonian seawater (3‰ to -2‰), signifying that precipitated authigenic carbonate had no influence on the isotopic composition of DIC. It was observed, however, that evaporitic depositional settings can accumulate carbonate sediment with low δ13C values (down to -8.4‰), potentially caused by local water column organic matter respiration during prolonged water-mass residence in a restricted marginal marine setting. If such depositional environments were globally pervasive, such as during during global sea-level lows, it is plausible that the carbon isotope mass balance would be affected. / Graduate / 2021-06-18
|
7 |
Physical and Chemical Weathering Processes and Associated CO<sub>2</sub> Consumption from Small Mountainous Rivers on High-Standing IslandsGoldsmith, Steven T. 25 September 2009 (has links)
No description available.
|
8 |
Modélisation de la dynamique du carbone et des surfaces dans les tourbières du nord / Modeling carbon and area dynamics of northern peatlandsQiu, Chunjing 20 February 2019 (has links)
Les tourbières boréales jouent un rôle important dans le cycle global du carbone en tant que puits de CO2 à long terme et en tant que l’une des plus grandes sources de méthane naturel (CH4). Ces importants réservoirs de carbone seront exposés à l’avenir au réchauffement et aux conditions plus humides caractérisant le changement climatique dans les hautes latitudes et, en raison de la grande quantité de carbone stockée dans les tourbières boréales, comprendre leurs dynamiques est important. Dans cette thèse, j'ai intégré une représentation du cycle de l'eau et du carbone dans les tourbières dans le modèle de surface terrestre ORCHIDEE-MICT (LSM), dans le but d'améliorer la compréhension du C des tourbes et de sa dynamique depuis l'Holocène, afin d'explorer les effets du changement climatique.Tout d'abord (chapitre 2), J'ai implémenté les tourbières en tant qu'unité hydrologique de sol (HSU) sous-réseau indépendante qui reçoit les eaux de ruissellement provenant des HSU non tourbeuses environnantes dans chaque cellule du réseau et ne possède pas de drainage, conformément la representation propose par Largeron et al. (2018). Pour modéliser les flux d’eau verticaux des sols tourbeux et non tourbeux, j’ai représenté les paramètres hydrologiques spécifiques à la tourbe pour l’HSU des tourbières, tandis que dans d’autres HSU, les paramètres hydrologiques sont déterminés par la texture dominante du sol de la cellule de la grille. j'ai choisi un modèle diplotelmique pour simuler la décomposition et l'accumulation de tourbe de C. Ce modèle à deux couches comprend une couche supérieure (acrotelm) inondée de manière variable et une couche inférieure (catotelm) inondée en permanence. Ce modèle a montré de bonnes performances dans la simulation de l'hydrologie des tourbières, du C et des flux d'énergie dans 30 tourbières boréales sur des échelles de temps quotidiennes à annuelles. Mais la simplification excessive de la dynamique du carbone pourrait limiter sa capacité à prévoir la réponse des tourbières boréales aux futurs changements climatiques.Deuxièmement (chapitre 3), j'ai remplacé le modèle carbone de tourbe diplotelmique par un modèle multicouche afin de prendre en compte les hétérogénéités verticales de la température et de l'humidité le long du profil de la tourbe. J'ai ensuite adapté TOPMODEL et les critères d'établissement des tourbières de Stocker et al. (2014) pour simuler la dynamique de la zone des tourbières dans une unité de la grille. Ici, la zone inondée donnée par TOPMODEL est traversée avec des conditions de croissance de tourbe appropriées pour définir la zone occupée par une HSU de tourbe. Ce modèle a été testé sur plusieurs sites de tourbières du nord et pour des simulations en 2D sur l'hémisphère nord (> 30 ° N). La superficie totale simulée de tourbières et le stock de carbone en 2010 est de 3,9 million de km2 et 463 PgC, conformément aux observations (3,4 à 4,0 million de km2 et 270 à 540 PgC).Enfin (chapitre 4), avec le modèle multicouche, j’ai réalisé des simulations factorielles à l’aide de données climatiques passées et futures issus des scenarios de trajectoire de concentration représentative (RCP) à partir de deux modèles de circulation générale (GCM) afin d’explorer les réactions des tourbières boréales au changement climatique. Les impacts des tourbières sur le futur bilan en carbone de l'hémisphère nord ont été examinés, notamment la réaction directe du bilan en carbone de la tourbière existante (simulée) et les effets indirects des tourbières sur le bilan de carbone terrestre lorsque les tourbières se modifient à l'avenir.Les travaux futurs se concentreront sur l’inclusion des influences du changement d’affectation des sols et des incendies sur les tourbières dans le modèle, étant donné que des pertes importantes de C pourraient survenir en raison de ces perturbations. Pour avoir une image complète du bilan C des tourbières, il faut prendre en compte les pertes de CH4 et de C organique dissous (DOC). / Northern peatlands play an important role in the global carbon (C) cycle as a long-term CO2 sink and the one of the largest natural methane (CH4) sources. Meanwhile, these substantial carbon stores will be exposed in the future to large warming and wetter conditions that characterize climate change in the high latitudes and, because of the large amount of C stored in northern peatlands, their fate is of concern. In this thesis, I integrated a representation of peatlands water and carbon cycling into the ORCHIDEE-MICT land surface model (LSM), with the aim to improve the understanding of peatland C and area dynamics since the Holocene, to explore effects of projected climate change to northern peatlands, and to quantify the role of northern peatlands in the global C cycle.Firstly (Chapter 2), I implemented peatland as an independent sub-grid hydrological soil unit (HSU) which receives runoff from surrounding non-peatland HSUs in each grid cell and has no bottom drainage, following the concept of Largeron et al. (2018). To model vertical water fluxes of peatland and non-peatland soils, I represented peat-specific hydrological parameters for the peatland HSU while in other HSUs the hydrological parameters are determined by the dominant soil texture of the grid cell. I chose a diplotelmic model to simulate peat C decomposition and accumulation. This two-layered model includes an upper layer (acrotelm) that is variably inundated and a lower layer (catotelm) that is permanently inundated. This model showed good performance in simulating peatland hydrology, C and energy fluxes at 30 northern peatland sites on daily to annual time scales. But the over simplification of the C dynamics may limit its capacity to predict northern peatland response to future climate change.Secondly (Chapter 3), I replaced the diplotelmic peat carbon model with a multi-layered model to account for vertical heterogeneities in temperature and moisture along the peat profile. I then adapted the cost-efficient version of TOPMODEL and peatland establishment criteria from Stocker et al. (2014) to simulate the dynamics of peatland area within a grid cell. Here the flooded area given by TOPMODEL is crossed with suitable peat growing conditions to set the area that is occupied by a peat HSU. This model was tested across a range of northern peatland sites and for gridded simulations over the Northern Hemisphere (>30 °N). Simulated total northern peatlands area and C stock by 2010 is 3.9 million km2 and 463 PgC, fall well within observation-based reported range of northern peatlands area (3.4 – 4.0 million km2) and C stock (270 – 540 PgC).Lastly (Chapter 4), with the multi-layered model, I conducted factorial simulations using representative concentration pathway (RCP)-driven bias-corrected past and future climate data from two general circulation models (GCMs) to explore responses of northern peatlands to climate change. The impacts of peatlands on future C balance of the Northern Hemisphere were discussed, including the direct response of the C balance of the (simulated) extant peatland area, and indirect effects of peatlands on the terrestrial C balance when peatlands area change in the future.Future work will focus on including influences of land use change and fires on peatland into the model, given that substantial losses of C could occur due to these disturbances. To have a complete picture of peatland C balance, CH4 and dissolved organic C (DOC) losses must be considered.
|
9 |
CARBONDIOXIDE FLUXES FROM A CONTROLLED BOREAL RIVERARTHUR, FRANK January 2018 (has links)
River, lakes and streams account for more carbon dioxide emissions than all other freshwater reservoirs together. However, there is still lack of knowledge of the physical processes that control the efficiency of the air-water exchange of CO2 in these aquatic systems. In the more turbulent water sections of a river, the gas transfer is thought to be governed by the river’s morphology such as bottom topography, slope and stream flow. Whiles for wider sections of the river, the gas transfer could potentially be influenced by atmospheric forcing (e.g. Wind speed). The main purpose of this project is to study the fluxes of carbon dioxide and how (wind speed and stream discharge) influence the CO2 fluxes in the river. In this study, direct and continuous measurements of CO2 emission was conducted for the first time in a controlled boreal river in Kattstrupeforsen (Sweden) from 18th April to 10th May 2018. A unique measurement setup which combines eddy covariance techniques, general meteorology and in situ water variables (for high accuracy emission measurements) was used. The results show that in the late winter, an upward directed CO2 fluxes measured in the river was approximately 2.2 μmol m−2 s−1. This value agrees with many other small and large rivers where CO2 fluxes has been studied. The river can be said to serve as source of CO2 to the atmosphere in the day due to the dominant upward fluxes recorded during the daytime. The results also show that carbon dioxide fluxes increase with increasing wind speed notably at wind speed above 2 m s-1. There was no relation between CO2 fluxes and stream discharge. This indicates that wind speed could be one principal factor for air- river gas exchange. The findings in this work on river gas exchange will provide a basis for a regional estimate and be applicable for many river systems on a global scale. / <p>2018-07-09</p>
|
10 |
Modeling terrestrial carbon cycle during the Last Glacial Maximum / Modélisation du cycle du carbone terrestre au cours du dernier maximum glaciaireZhu, Dan 30 September 2016 (has links)
Pendant les transitions glaciaire-interglaciaires,on observe une augmentation en partie abrupte de près de 100 ppm du CO2atmosphérique, indiquant une redistribution majeure entre les réservoirs de carbone des continents, de l'océan et de l'atmosphère.Expliquer les flux de carbone associés à ces transitions est un défi scientifique, qui nécessite une meilleure compréhension du stock de carbone ‘initial’ dans la biosphère terrestre au cours de la période glaciaire. L’objectif de cette thèse est d’améliorer la compréhension du fonctionnement des écosystèmes terrestres et des stocks de carbone au cours du dernier maximum glaciaire (LGM, il y a environ21.000 ans), à travers plusieurs nouveaux développements dans le modèle global de végétation ORCHIDEE-MICT, pour améliorer la représentation de la dynamique de la végétation, la dynamique du carbone dans le sol du pergélisol et les interactions entre les grands herbivores et la végétation dans le modèle de la surface terrestre.Pour la première partie, la représentation de la dynamique de la végétation dans ORCHIDEEMICT pour les régions des moyennes et hautes latitudes, a été calibrée et évaluée avec un ensemble de données spatiales de classes de végétation, production primaire brute, et de biomasse forestière pour la période actuelle.Des améliorations sont obtenues avec la nouvelle version du modèle dans la distribution des groupes fonctionnels de végétation. Ce modèle a ensuite été appliqué pour simuler la distribution de la végétation au cours de laLGM, montrant un accord général avec les reconstructions ponctuelles basées sur des données de pollen et de macro-fossiles de plantes.Une partie du pergélisol (sols gelés en permanence) contient des sédiments épais,riches en glace et en matières organiques appelés Yedoma, qui contiennent de grandes quantités de carbone organique, et sont des reliques des stocks de carbone du Pléistocène.Ces sédiments ont été accumulés sous des climats glaciaires. Afin de simuler l'accumulation du carbone dans les dépôts de Yedoma, j’ai proposé une nouvelle paramétrisation de la sédimentation verticale dans le module de carbone dans le sol de ORCHIDEE-MICT. L'inclusion de ce processus a permis de reproduire la distribution verticale de carbone observée sur des sites de Yedoma. Une première estimation du stock de carbone dans le pergélisol au cours du LGM est obtenue, de l’ordre de ~ 1550 PgC, dont 390 ~446 PgC sous forme de Yedoma encore intacts aujourd’hui (1,3 millions de km2).Potentiellement, une plus grande surface de Yedoma pourrait être présente pendant leLGM, qui a disparue lors de la déglaciation.Pour la troisième partie, à la lumière des impacts écologiques des grands animaux, et le rôle potentiel des méga-herbivores comme une force qui a maintenu les écosystèmes steppiques pendant les périodes glaciaires, j'ai incorporé un modèle de d’herbivores dans ORCHIDEE-MICT, basé sur des équations physiologiques pour l'apport énergétique et les dépenses, le taux de natalité, et le taux de mortalité pour les grands herbivores sauvages.Le modèle a montré des résultats raisonnables de biomasse des grands herbivores en comparaison avec des observations disponibles aujourd’hui sur des réserves naturelles. Nous avons simulé un biome de prairies très étendu pendant le LGM avec une densité importante de grands herbivores. Les effets des grands herbivores sur la végétation et le cycle du carbone du LGM ont été discutés, y compris la réduction de la couverture forestière, et la plus grande productivité des prairies.Enfin, j’ai réalisé une estimation préliminaire du stock total de carbone dans le permafrost pendant le LGM, après avoir tenu compte des effets des grands herbivores et en faisant une extrapolation de l'étendue spatiale des sédiments de type Yedoma basée sur des analogues climatiques et topographiques qui sont similaires à la région de Yedoma actuelle. / During the repeated glacialinterglacialtransitions, there has been aconsistent and partly abrupt increase of nearly100 ppm in atmospheric CO2, indicating majorredistributions among the carbon reservoirs ofland, ocean and atmosphere. A comprehensiveexplanation of the carbon fluxes associatedwith the transitions is still missing, requiring abetter understanding of the potential carbonstock in terrestrial biosphere during the glacialperiod. In this thesis, I aimed to improve theunderstanding of terrestrial carbon stocks andcarbon cycle during the Last Glacial Maximum(LGM, about 21,000 years ago), through aseries of model developments to improve therepresentation of vegetation dynamics,permafrost soil carbon dynamics, andinteractions between large herbivores andvegetation in the ORCHIDEE-MICT landsurface model.For the first part, I improved theparameterization of vegetation dynamics inORCHIDEE-MICT for the northern mid- tohigh-latitude regions, which was evaluatedagainst present-day observation-based datasetsof land cover, gross primary production, andforest biomass. Significant improvements wereshown for the new model version in thedistribution of plant functional types (PFTs),including a more realistic simulation of thenorthern tree limit and of the distribution ofevergreen and deciduous conifers in the borealzone. The revised model was then applied tosimulate vegetation distribution during theLGM, showing a general agreement with thepoint-scale reconstructions based on pollen andplant macrofossil data.Among permafrost (perennially frozen) soils,the thick, ice-rich and organic-rich siltysediments called yedoma deposits hold largequantities of organic carbon, which areremnants of late-Pleistocene carbonaccumulated under glacial climates. In order tosimulate the buildup of the thick frozen carbonin yedoma deposits, I implemented asedimentation parameterization in the soilcarbon module of ORCHIDEE-MICT. Theinclusion of sedimentation allowed the modelto reproduce the vertical distribution of carbonobserved at the yedoma sites, leading toseveral-fold increase in total carbon. Simulatedpermafrost soil carbon stock during the LGMwas ~1550 PgC, among which 390~446 PgCwithin today’s known yedoma region (1.3million km2). This result was still anunderestimation since the potentially largerarea of yedoma during the LGM than todaywas not yet taken into account.For the third part, in light of the growingevidence on the ecological impacts of largeanimals, and the potential role of megaherbivoresas a driving force that maintainedthe steppe ecosystems during the glacialperiods, I incorporated a dynamic grazingmodel in ORCHIDEE-MICT, based onphysiological equations for energy intake andexpenditure, reproduction rate, and mortalityrate for wild large grazers. The model showedreasonable results of today’s grazer biomasscompared to empirical data in protected areas,and was able to produce an extensive biomewith a dominant vegetation of grass and asubstantial distribution of large grazers duringthe LGM. The effects of large grazers onvegetation and carbon cycle were discussed,including reducing tree cover, enhancinggrassland productivity, and increasing theturnover rate of vegetation living biomass.Lastly, I presented a preliminary estimation ofpotential LGM permafrost carbon stock, afteraccounting for the effects of large grazers, aswell as extrapolations for the spatial extent ofyedoma-like thick sediments based on climaticand topographic features that are similar to theknown yedoma region. Since these results werederived under LGM climate and constantsedimentation rate, a more realistic simulationwould need to consider transient climate duringthe last glacial period and sedimentation ratevariations in the next step.
|
Page generated in 0.0683 seconds