• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational characterization of IRE-regulated genes in Glossina morsitans

Dashti, Zahra Jalali Sefid January 2013 (has links)
Philosophiae Doctor - PhD / Blood feeding is a habit exhibited by many insects. Considering the devastating impact of these insects on human health, it is important to focus research on understanding the biology behind blood-feeding, disease transmission and host-pathogen interactions. Such knowledge would pave the way for developing efficient preventative measures. Iron an important element for species survival, is at the center of events controlling tsetse’s fitness and reproductive success. Hence, targeting genes involved in iron trafficking and sequestration would present possible means of preventing disease transmission. Considering the dynamic and multi-factorial nature of iron metabolism, a well-coordinated regulatory system is expected to be at work. Despite extensive literature on the mechanism of iron regulation and key factors responsible in maintaining its homeostasis in human, less attention has been given to understand such system in insects, especially the blood-feeding insects. The availability of the genome sequences for several insect disease vectors allows for a more detailed analysis on the identification and characterization of events controlling and preventing iron-induced toxicity following a blood-meal. The International Glossina Genome Initiative (IGGI) has coordinated the sequencing and annotation of the Glossina morsitans genome that has led to the identification of 12220 genes. This knowledge-base along with current understanding of the IRE system in regulating iron metabolism, allowed for investigating the UTRs of Glossina genes for the presence of these elements. Using a combination of motif enrichment and IRE-stem loop structure prediction, an IRE-mediated regulation was inferred for 150 genes, among which, 72 were identified with 5’-IREs and 78 with 3’-IREs. Of the identified IRE-regulated genes, the ferritin heavy chain and MRCK-alpha are the only known genes to have IREs, while the rest are novel genes for which putative roles in regulating iron levels in tsetse fly have been assigned in this study. Moreover, the functional inference of the identified genes further points to the enrichment of transcription and translation. Furthermore, several hypothetical proteins with no defined functions were identified to be IRE-regulated. These include TMP007137, TMP009128, TMP002546, TMP002921, TMP003628, TMP004581, TMP008259, TMP012389, TMP005219, TMP005827, TMP007908, TMP009332, TMP01- 3384, TMP009102, TMP010544, TMP010707, TMP004292, TMP006517, TMP014030, TMP009821 and TMP003060 for which an iron-regulatory mechanism of action may be inferred. We further report 26 IRE-regulated secreted proteins in Glossina, that present good candidates for further investigation pertaining to the development of novel vector control strategies. Using the predicted data on the identified IRE-regulated genes and their functional classification, we derived at 29 genes with putative roles in iron trafficking, where several unknown and hypothetical proteins are included. Thus a novel role is inferred for these genes in cellular binding and transport in the context of iron metabolism. It is therefore possible that these genes may have evolved in Glossina, such that they compensate for the absence of an IRE- regulated mechanism for transferrin. Additionally, we propose 14 IRE-regulated genes involved in immune and stress response, which may indeed play crucial roles at the host pathogen interface through their possible mechanisms of iron sequestration. Using the subcellular localization analysis, we further categorized the putative IRE regulated genes into several subcellular localizations, where the majority of genes were found within the nucleus and the cytosol. The detection of the conserved motifs in a set of genes, is an interesting yet sophisticated area of research, that allows for identifying either co-regulated or orthologous genes, while further providing support for the putative function of a set of genes that would otherwise remain uncharacterized. This is based on the notion that co-regulated genes are often coexpressed to carry out a specific function. As such, 14 regulatory elements were identified in the 5’- and 3’-UTRs of IRE-regulated genes, involved in embryonic development and reproduction, inflammation and immune response, signaling pathways and neurogenesis as well as DNA repair. This study further proposes several IRE-regulated genes as targets for micro-RNA regulation through identifying micro-RNA binding sites in their 3’UTRs. Using a motif clustering approach we clustered IRE-regulated genes based on the number of motifs they share. Significantly co-regulated genes sharing two or more motifs were determined as critical targets for future investigation. The expression map of IRE-regulated genes was analyzed to better understand the events taking place from 3 hours to 15 days following a blood meal. Re-analysis of Anopheles microarray chip showed the significant expression of three cell envelope and transport genes as early response and six as late response to a blood meal, which could indeed be assigned a putative role in iron trafficking. Genes identified in this study with implications in iron metabolism, whose timely expression allows for maintaining iron homeostasis, represent good targets for future work. Considering the important role of evolution in species adaptation to habits such as Hematophagy, it is of importance to identify evolutionary signatures associated with these changes. To distinguish between evolutionary forces that are specific to iron-metabolism in blood-feeding insects and those that are found in other insects, the IRE-regulated genes were clustered into orthologous groups using several blood feeding and non-blood feeding insect species. Assessment of different evolutionary scenarios using the Maximum Likelihood (ML) approach, points to variations in the evolution of IRE-regulated genes between the two insect groups, whereby several genes indicate an increased mutation rate in the BF-insect group relative to their non-blood feeding insect counterparts. These include TMP003602 (phosphoinositide3-kinase), TMP009157 (ubiquitin-conjugating enzyme9), TMP010317 (general transcription factor IIH subunit1), TMP011104 (serine-pyruvate mitochondrial), TMP013137 (pentatricopeptide Transcription and translation), TMP013886 (tRNA(uridine-2-o-)-methyl-transferase-trm7) and TMP014187 (mediator 100kD). Additionally, we have indicated the presence of positively selected sites within seven blood-feeding IRE-regulated genes namely TMP002520 (nucleoporin), TMP008942 (eukaryotic translation initiation factor 3), TMP009871(bruno-3 transcript) , TMP010317 (general transcription factor IIH subunit1), TMP010673 (ferritin heavy-chain protein), TMP011104 (serine-pyruvate mitochondrial) and TMP011448 (brain chitinase and chia). Thus the results of this study provides an in depth understanding of iron metabolism in Glossina morsitans and confers important targets for future validations based on which innovative control strategies may be designed.
2

Genome-wide annotation of chemosensory and glutamate-gated receptors, and related genes in Glossina morsitans morsitans tsetse fly

Obiero, George Fredrick Opondo January 2014 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the sole vectors of trypanosomes that cause nagana and sleeping sickness in animals and humans respectively in tropical Africa. Tsetse are unique: both sexes adults are exclusive blood-feeders, females are mated young and give birth to a single mature larva in sheltered habitats per pregnancy. Tsetse use chemoreception to detect and respond to chemical stimuli, helping them to locate hosts, mates, larviposition and resting sites. The detection is facilitated by chemoreceptors expressed on sensory neurons to cause specific responses. Specific molecular factors that mediate these responses are poorly understood in tsetse flies. This study aimed to identify and characterize genes that potentially mediate chemoreception in Glossina morsitans morsitans tsetse flies. These genes included sensory odorant (OR), gustatory (GR), ionotropic (IR), and related genes for odorant-binding (OBP), chemosensory (CSP) and sensory neuron membrane (SNMP) proteins. Synaptic transmission in higher brain sites may involve ionotropic glutamate-gated (iGluR) and metabotropic glutamate-gated (mGluR) receptors. The genes were annotated in G. m. morsitans genome scaffold assembly GMOY1.1 Yale strain using orthologs from D. melanogaster as query via TBLASTX algorithm at e-value below 1e-03. Positive blast hits were seeded as gene constructs in their respective scaffolds, and used as genomic reference onto which female fly-derived RNA sequence reads were mapped using CLC Genomics workbench suite. Seeded gene models were modified using RNA-Seq reads then viewed and re-edited using Artemis genome viewer tool. The genome was iteratively searched using the G. m. morsitans gene model sequences to recover additional similar hit sequences. The gene models were confirmed through comparisons against the NCBI conserved domains database (CDD) and non-redundant Swiss-Prot database. Trans-membrane domains and secretory peptides were predicted using TMHMM and SignalP tools respectively. Putative functions of the genes were confirmed via Blast2GO searches against gene ontology database. Evolutionary relationships amongst and between the genes were established using maximum likelihood estimates using best fitting amino acid model test in MEGA5 suite and PhyML tool. Expression profiles of genes were estimated using the RNA-seq data via CLCGenomics RNA-sequences analysis pipeline. Overall, 46 ORs, 14 GRs, and 19 IRs were identified, of which 21, 6 and 4 were manually identified for ORs, GRs, and IRs respectively. Additionally, 15 iGluRs, 6 mGluRs, 5 CSPs, 15 CD36-like, and 32 OBPs were identified. Six copies of OR genes (GmmOR41-46) were homologous to DmelOr67d, a single copy cis vacenyl acetate (cVA) receptor . Genes whose receptor homologs are associated with responses to CO2, GmmGR1-4, had higher expression profiles from amongst glossina GR genes. Known core-receptor homologs OR1, IR8a, IR25a and IR64a were conserved, and three species-specific divergent IRs (IR10a, IR56b and IR56d) were identified. Homologs of GluRIID, IR93a, and sweet taste receptors (Gr5a and Gr64a) were not identified in the genome. Homolog for LUSH protein, GmmOBP26, and sensory neuron membrane receptors SNMP1 and SNMP2 were conserved in the genome. Results indicate reduced repertoire of the chemosensory genes, and suggest reduced host range of the tsetse flies compared to other Diptera. Genes in multiple copies suggest their prioritization in chemoreception, which in turn may be tied to high specificity in host selection. Genes with high sequence conservation and expression profiles probably relate to their broad expression and utility within the fly nervous system. These results lay foundation for future comparative studies with other insects, provide opportunities for functional studies, and form the basis for re-examining new approaches for improving tsetse control tools and possible drug targets based on chemoreception.
3

An evolutionary genomics approach towards analysis of genes implicated in transmission of trypanosomes between tsetse fly and mammalian host

Mwangi, Sarah Wambui January 2009 (has links)
>Magister Scientiae - MSc / Human African trypanosomiasis is the world’s third most important parasitic disease affecting human health after malaria and schistosomiaisis. The world health organization estimates approximately 60 million people at risk in sub-Saharan Africa and up to 50,000 deaths per year caused by trypanosomiasis. Current management of human African trypanosomiasis relies on active surveillance and chemotherapy of infected patients. Efforts to develop a vaccine to immunize the human host have been hampered by antigenic variation of the parasites cell coat. The advent of the genome era has opened up opportunities for developing novel strategies for interrupting the transmission cycle of trypanosomes, specifically using any of the three players,the human host, the tsetse fly vector and/or the parasite. The human genome has been deciphered and the genomes of several trypanosome species have been sequenced. Sequencing of additional neglected trypanosome species is in progress. The tsetse fly genome is currently being sequenced as part of the genomic activities of the International Glossina genome initiative (IGGI). In an attempt to support the tsetse fly sequencing effort, expressed sequence tags (ESTs) from various tissues and developmental stages of Glossina morsitans have been generated.In this study, tsetse fly EST data was analyzed using bioinformatics approaches, focusing on transcripts encoding serpin genes implicated in the immune defenses of tsetse flies. Glossina morsitans homologues to Drosophila melanogaster serpin4, serpin5, and serpin27A and Anopheles gambiae serpin10 were identified in the tsetse fly EST contigs. Comparison of the reactive center loop of tsetse fly serpins with human α-1-antitrypsin suggests that these tsetse serpins are inhibitory. Preliminary EST clustering did not succeed in assembling 3564 Tsal encoded ESTs into one contig. In this study, these ESTs were assembled together with three published Tsal cDNAs. A total of 29 Tsal-encoded contigs were generated. An analysis of the sequence variation within the Tsal EST assembled contigs identified five single base mismatches namely A-T, T-A, G-T and T-G.Results from this study form a basis onto which genetic and biochemical experimental studies can be designed, a process that will be successfully carried out once we have a reference genome. Specifically, studies aimed at genetic modification of tsetse flies towards populations that are inhabitable to trypanosomes. Ultimately, this will supplement current vector control strategies towards elimination of human African trypanosomiasis.
4

Development of a comprehensive annotation and curation framework for analysis of Glossina Morsitans Morsitans expresses sequence tags

Wamalwa, Mark. January 2011 (has links)
This study has successfully identified transcripts differentially expressed in the salivary gland and midgut and provides candidate genes that are critical to response to parasite invasion. Furthermore, an open-source Glossina resource (G-ESTMAP) was developed that provides interactive features and browsing of functional genomics data for researchers working in the field of Trypanosomiasis on the African continent.
5

Development of a comprehensive annotation and curation framework for analysis of Glossina Morsitans Morsitans expresses sequence tags

Wamalwa, Mark. January 2011 (has links)
This study has successfully identified transcripts differentially expressed in the salivary gland and midgut and provides candidate genes that are critical to response to parasite invasion. Furthermore, an open-source Glossina resource (G-ESTMAP) was developed that provides interactive features and browsing of functional genomics data for researchers working in the field of Trypanosomiasis on the African continent.
6

In silico investigation of glossina morsitans promoters

Mwangi, Sarah Wambui January 2013 (has links)
Philosophiae Doctor - PhD / Tsetse flies (Glossina spp) are the biological vectors for Trypanosomes, the causative magents of Human African Trypanosomiasis (HAT). HAT is a debilitating disease that continues to present a major public health problem and a key factor limiting rural development in vast regions of tropical Africa. To augment vector control efforts, the International Glossina Genome Initiative (IGGI) was established in 2004 with the ultimate goal of generating a fully annotated whole genome sequence for Glossina morsitans. A working draft genome of Glossina morsitans was availed in 2011. In this thesis, transcriptional regulatory features in Glossina morsitans were analysed using the draft genome. A method for TSS identification in the newly sequenced Glossina morsitans genome was developed using TSS-seq tags sampled from two developmental stages of Glossina morsitans. High throughput next generation sequencing reads obtained from Glossina morsitans larvae and pupae were used to locate transcription start sites (TSS) in the Glossina morsitans genome. TSS-seq tag clusters, defined as a minimum number of reads at the 5’ predicted UTR or first coding exon, were used to define transcription start sites. A total of 3134 tag clusters were identified on the Glossina genome. Approximately 45.4% (1424) of the tag clusters mapped to the first coding exons or their proximal predicted 5’UTR regions and include 31 tag clusters that mapped to transposons. A total of 1101 (35.1%) tag clusters mapped outside the genic region and/or scaffolds without gene predictions and may correspond to previously un-annotated transcripts or noncoding RNA TSS. The core promoter regions were classified as narrow or broad based on the number of TSS positions within a TSS-seq cluster. Majority (95%) of the core promoters analysed in this study were of the broad type while only 5% were of the narrow type. Comparison of canonical core promoter motif occurences between random and bona fide core promoters showed that, generally, the number of motifs in biologically functional genomic windows in the true dataset exceeded those in the random dataset (p <= 0.00164, 0.00135, 0.00185 for the narrow, broad with peak and broad without peak categories respectively). Frequency of motif co-occurrence in core promoter was found to be fundamentally different across various initiation patterns. Narrow core promoters recorded higher frequency of the TATA-box and INR motifs and two-way motif co-occurrence showed that the TATA-box-INR pair is over-represented in the narrow category. Broad core promoters showed higher frequency of the BREd and MTE motifs and two-way motif co-occurrence showed that the MTE-DPE pair is over-represented in broad core promoters. TATA-less promoters account for 77% of the core promoters in this analysis. TATA-less core promoters showed a higher frequency of the MTE and INR motifs in contrast to observations in Drosophila where the DPE motif has been reported to occur frequently in TATA-less promoters. These motif combinations suggest their equal importance to transcription in their corresponding promoter classes in Glossina morsitans.
7

Development of a comprehensive annotation and curation framework for analysis of Glossina Morsitans Morsitans expresses sequence tags

Wamalwa, Mark January 2011 (has links)
Philosophiae Doctor - PhD / This study has successfully identified transcripts differentially expressed in the salivary gland and midgut and provides candidate genes that are critical to response to parasite invasion. Furthermore, an open-source Glossina resource (G-ESTMAP) was developed that provides interactive features and browsing of functional genomics data for researchers working in the field of Trypanosomiasis on the African continent. / South Africa
8

A comparative genomics approach towards classifying immunity-related proteins in the tsetse fly

Mpondo, Feziwe January 2009 (has links)
>Magister Scientiae - MSc / Tsetse flies (Glossina spp) are vectors of African trypanosome (Trypanosoma spp) parasites, causative agents of Human African trypanosomiasis (sleeping sickness) and Nagana in livestock. Research suggests that tsetse fly immunity factors are key determinants in the success and failure of infection and the maturation process of parasites. An analysis of tsetse fly immunity factors is limited by the paucity of genomic data for Glossina spp. Nevertheless, completely sequenced and assembled genomes of Drosophila melanogaster, Anopheles gambiae and Aedes aegypti provide an opportunity to characterize protein families in species such as Glossina by using a comparative genomics approach. In this study we characterize thioester-containing proteins (TEPs), a sub-family of immunity-related proteins, in Glossina by leveraging the EST data for G.morsitans and the genomic resources of D. melanogaster, A. gambiae as well as A.aegypti.A total of 17 TEPs corresponding to Drosophila (four TEPs), Anopheles (eleven TEPs) and Aedes aegypti (two TEPs) were collected from published data supplemented with Genbank searches. In the absence of genome data for G. morsitans, 124 000 G.morsitans ESTs were clustered and assembled into 18 413 transcripts (contigs and singletons). Five Glossina contigs (Gmcn1115, Gmcn1116, Gmcn2398, Gmcn2281 and Gmcn4297) were identified as putative TEPs by BLAST searches. Phylogenetic analyses were conducted to determine the relationship of collected TEP proteins.Gmcn1115 clustered with DmtepI and DmtepII while Gmcn2398 is placed in a separate branch, suggesting that it is specific to G. morsitans.The TEPs are highly conserved within D. melanogaster as reflected in the conservation of the thioester domain, while only two and one TEPs in A. gambiae and A. aegypti thioester domain show conservation of the thioester domain suggesting that these proteins are subjected to high levels of selection. Despite the absence of a sequenced genome for G. morsitans, at least two putative TEPs where identified from EST data.
9

Why is Nature Able to Mold Some Phenotypes More Readily than Others? Investigating the Structure, Function and Evolution of ßeta-2 Tubulin in Drosophila Melanogaster

Golconda, Sarah Rajini 31 May 2018 (has links)
No description available.
10

Stress thermique et thermorégulation chez lez insectes hématophages / Thermal stress and thermoregulation in haematophagous insects

Lahondère, Chloé 23 November 2012 (has links)
Les insectes sont soumis aux fluctuations thermiques de leur environnement mais disposent d’un panel varié de réponses comportementales, physiologiques et biochimiques pour en minimiser les effets délétères et maintenir leur intégrité physiologique. Ainsi certaines espèces régulent activement leur température interne indépendamment de la température de l’environnement. Si ces insectes peuvent s’affranchir des contraintes thermiques imposées par leur environnement, ceux qui se nourrissent du sang chaud d’hôtes vertébrés endothermes n’ont pas d’autres choix que de se confronter à une situation de stress thermique à chaque prise alimentaire. Le principal objectif de ce travail de thèse est de comprendre comment des insectes hématophages, employant des stratégies alimentaires différentes, gèrent le stress thermique associé au flux massif de chaleur engendré par l’ingestion du repas de sang. Nos résultats montrent que ces insectes ont su s’adapter en développant différentes stratégies de thermorégulation. / Insects are submitted to thermal fluctuations of their environment and have developed a wide ranged panel of behavioral, physiological and biochemical responses, to minimize the subsequent deleterious effects and maintain their physiological integrity. Some species actively regulate their internal temperature independently of the temperature of the environment. If these insects can overcome the constraints imposed by their thermal environment, those that feed on warm-blooded vertebrate hosts have no choice but to confront a situation of thermal stress at each feeding event. The main objective of this work is to understand how bloodsucking insects manage heat stress associated with the massive flow of heat generated by the ingestion of the blood meal. Our results show these insects have developed different strategies of thermoregulation to protect themselves from overheating.

Page generated in 0.1168 seconds