Spelling suggestions: "subject:"monócitos"" "subject:"monócito""
1 |
Desenvolvimento dos Gonócitos e Espermatogônias Tronco em Ratos: Proliferação, Distribuição e Morte Revisitadas / Gonocyte Development and Spermatogonial Stem Cell Formation in Rats: Death, Proliferation and Distribution RevisitedZogbi, Camila [UNIFESP] 22 February 2011 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:49:51Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-02-22 / As espermatogônias tronco são células responsáveis pela produção contínua dos gametas masculinos, os espermatozóides. Essas células se diferenciam a partir dos gonócitos, porém, pouco se sabe sobre sua biologia e sobre os processos pelos quais elas se diferenciam. Embora sejam células de grande importância, não há informações precisas sobre a dinâmica de formação dessas células a partir dos gonócitos nem sobre o número total e a distribuição das espermatogônias indiferenciadas nos testículos, o que dificulta a interpretação de estudos nessa área. A proposta deste trabalho foi analisar a proliferação, morte e distribuição dos gonócitos e pré-espermatogônias nos testículos de ratos no desenvolvimento embrionário e pós-natal, em períodos críticos do desenvolvimento testicular. Foram utilizados ratos com idades de 19dpc, 1, 3, 5, 8, 11 e 15dpp, cujos testículos foram analisados quanto à distribuição, proliferação e apoptose dos gonócitos e pré-espermatogônias durante o desenvolvimento testicular. A análise morfológica dos testículos, o método de TUNEL, a imunomarcação das proteínas p53 e caspase-3 clivada foram empregados para investigação de apoptose, enquanto a densidade numérica (Nv), quantificação de gonócitos, densidade de comprimento cordonal (Lv), comprimento cordonal total (L), volume total dos cordões seminíferos e estimativa do número total de gonócitos foram utilizados para investigação da distribuição dessas células. A citometria de fluxo foi empregada para avaliar a proliferação dos gonócitos através do uso do kit Guava Cell Cycle. Para identificar as espermatogônias indiferenciadas nas idades de 11 e 15dpc foi utilizada a imunomarcação da proteína OCT4. Durante a análise morfológica testicular observou-se que ocorre redução do número de gonócitos por seção testicular nos primeiros cinco dias após o nascimento e que as primeiras espermatogônias são observadas aos 8dpp. Foi observado aumento da Lv nos animais de 1dpp em relação aos de 19dpc. Dos 3 aos 11dpp, houve aumento progressivo da Lv, que voltou a diminuir aos 15dpp. Houve crescimento muito acentuado dos cordões seminíferos entre 19dpc e 1dpp. Após o nascimento, o crescimento continuou até os 15dpp, mas foi menos intenso. Já a Nv de gonócitos foi inversamente proporcional ao crescimento testicular, enquanto o número estimado de gonócitos foi cerca de quatro vezes maior aos 1dpp em relação aos de 19dpc. Isto explica os dados obtidos a partir da análise morfológica na qual a frequência de gonócitos por seção testicular diminuiu nos cinco primeiros dias após o nascimento. Após o nascimento, o número de gonócitos permaneceu estável até os 5dpp, sugerindo que não há morte ou proliferação dessas células nessas idades. Não foram detectados gonócitos em apoptose nas idades estudadas, embora corpos apoptóticos tenham sido observados. Esses corpos apoptóticos eram muito raros dos 19dpc aos 5dpp e começaram a se tornar mais frequentes aos 8dpp, atingindo sua frequência máxima aos 15dpp. Também aos 15dpp, células positivas para TUNEL e caspase 3 clivada foram observadas, mas essas células não puderam ser identificadas devido ao fato de sua morfologia já estar consideravelmente alterada. Contudo, todos os gonócitos de 19dpc até 8dpp foram positivos ao emprego da caspase-3 clivada, embora apresentassem morfologia normal. Isto indica que a caspase-3 clivada pode ter outra função, que não seja apoptótica, no desenvolvimento dos gonócitos. A análise ao citômetro de fluxo nas idades de 19dpc a 5dpp mostrou que mais da metade dos gonócitos encontravam-se em fase G0/G1 do ciclo celular, indicando que muitas estão em quiescência nestas idades. Não houve marcação da proteína OCT4 nas espermatogônias, o que impossibilitou a quantificação dessas células nas idades de 8, 11 e 15dpp. Os dados do presente estudo sugerem que a diminuição da frequência de gonócitos por seção testicular nos primeiros dias após o nascimento não é consequência de apoptose dessas células, como tem sido sugerido na literatura, mas sim de sua redistribuição ao longo dos cordões seminíferos. Como não há indícios de que estas células estejam proliferando nessas idades, menos gonócitos são observados por seção testicular. Concluiu-se ainda que a proteína OCT4 não está presente nos testículos de rato nas idades pós-natais, diferentemente do observado em camundongo. Estudos estão sendo realizados para verificar quando os gonócitos retomam a proliferação, quando a população definitiva de espermatogônias tronco é formada e quais seriam os marcadores ideais para estudos das espermatogônias indiferenciadas no rato. / Spermatogonial stem cells (SSC) are responsible for the constant production of the male gamete. These cells differentiate from the gonocytes, but little is known about its biology and about the mechanisms of their differentiation. Despite the importance of these cells, the information about the dynamic of formation of these cells from the gonocytes or about the total number and distribution of the undifferentiated spermatogonia is not precise, causing problems to the interpretation of the studies in this area. The goal of this study was to analyze the proliferation, death and distribution of the gonocytes and pre-spermatogonia in the rat testis in embryonic and postnatal life. Rat testes were collected at 19dpc and at 1, 3, 5, 8, 11 and 15dpp for the analysis of the distribution, proliferation and apoptosis of the gonocytes and pre-spermatogonia during key periods of testicular development. To investigate gonocyte apoptosis, four methods were used: morphological analysis, TUNEL method and immunostaining of p53 and cleaved caspase 3. The number of gonocytes was investigated using the numerical density (Nv) and an estimative of the total number of these cells was obtained. These data were associated with the seminiferous cord length density (Lv), the total cordonal length (L) the total volume of the seminiferous cords and the total estimated number of gonocytes were used to investigate the distribution of these cells. Guava flow citometry was used to evaluate the proliferation of the gonocytes. To identify the undifferentiated spermatogonia at 11 and 15dpp, OCT4 labeling was used. During testicular morphological analysis it was observed a reduction of the number of the gonocytes per testicular section during the first five days after birth and the first spermatogonial cells were seen at 8dpp. The Lv increased in the 1dpp rats in relation to 19dpc rats. From 3 to 11dpp, Lv increased progressively and subsequently decreased at 15dpp. There was very accentuated growth of the seminiferous cords (L) between 19dpc and 1dpp. The growth progressed until 15dpp, although it was less intense. The gonocyte Nv was inversely proportional to the seminiferous cord growth, while the total estimated number of gonocytes was about four times higher at 1dpp in relation to the 19dpc embryos. This explains the data obtained from morphological analysis, in which the frequency of gonocytes per testicular section decreased in the first days after birth. The number of gonocytes remained stable from 1 to 5dpp, suggesting that the gonocytes do not die or proliferate in this period. Apoptotic gonocytes were not detected in all ages, although apoptotic bodies were observed. These apoptotic bodies were rare between 19dpc and 5dpp, and at 8dpp they became more frequent, and reached the highest frequency at 15dpp. Also at 15dpp, TUNEL positive-cells and cleaved caspase3-positive cells were observed, although these cells could not be indentified due to the fact that their morphology was already changed. Nevertheless, all gonocytes between 19dpc and 8dpp were positive to cleaved caspase-3, although they presented normal morphology. This suggests that cleaved caspase-3 could have other function that not apoptotic in gonocytes development. The flow citometry analysis between 19dpc and 5dpp showed that more than half of the gonocytes was at G0/G1 phase of the cell cycle, proving that lots of them are quiescent in these ages. There were no OCT4-positive spermatogonia, what impaired the quantification of these cells at 8, 11 and 15dpp. The data of this study suggest that the decrease in the frequency of gonocytes per testicular section in the first days after birth is not due to apoptosis, as has been suggested in the literature, but rather to their redistribution throughout the seminiferous cords. Since there is no evidence that these cells are proliferating in these ages, less gonocytes are seen per testicular section. It has also been concluded that OCT4 protein is not present in rat testis in postnatal ages, differing from what is observed in the mouse testis. Further studies are been performed to verify when gonocytes resume its proliferation, when the final SSC population is established and which markers could be useful to study undifferentiated spermatogonia in the rat. / TEDE / BV UNIFESP: Teses e dissertações
|
Page generated in 0.0362 seconds