1 |
Perron-Frobenius' Theory and ApplicationsEriksson, Karl January 2023 (has links)
This is a literature study, in linear algebra, about positive and nonnegative matrices and their special properties. We say that a matrix or a vector is positive/nonnegative if all of its entries are positive/nonnegative. First, we study some generalities and become acquainted with two types of nonnegative matrices; irreducible and reducible. After exploring their characteristics we investigate and prove the two main theorems of this subject, namely Perron's and Perron-Frobenius' theorem. In short Perron's theorem from 1907 tells us that the spectral radius of a positive matrix is a simple eigenvalue of the matrix and that its eigenvector can be taken to be positive. In 1912, Georg Frobenius generalized Perron's results also to irreducible nonnegative matrices. The two theorems have a wide range of applications in both pure mathematics and practical matters. In real world scenarios, many measurements are nonnegative (length, time, amount, etc.) and so their mathematical formulations often relate to Perron-Frobenius theory. The theory's importance to linear dynamical systems, such as Markov chains, cannot be overstated; it determines when, and to what, an iterative process will converge. This result is in turn the underlying theory for the page-ranking algorithm developed by Google in 1998. We will see examples of all these applications in chapters four and five where we will be particularly interested in different types of Markov chains. The theory in this thesis can be found in many books. Here, most of the material is gathered from Horn-Johnson [5], Meyer [9] and Shapiro [10]. However, all of the theorems and proofs are formulated in my own way and the examples and illustrations are concocted by myself, unless otherwise noted. / Det här är en litteraturstudie, inom linjär algebra, om positiva och icke-negativa matriser och deras speciella egenskaper. Vi säger att en matris eller en vektor är positiv/icke-negativ om alla dess element är positiva/icke-negativa. Inledningsvis går vi igenom några grundläggande begrepp och bekanta oss med två typer av icke-negativa matriser; irreducibla och reducibla. Efter att vi utforskat deras egenskaper så studerar vi och bevisar ämnets två huvudsatser; Perrons och Perron-Frobenius sats. Kortfattat så säger Perrons sats, från 1907, att spektralradien för en positiv matris är ett simpelt egenvärde till matrisen och att dess egenvektor kan tas positiv. År 1912 så generaliserade Georg Frobenius Perrons resultat till att gälla också för irreducibla icke-negativa matriser. De två satserna har både många teoretiska och praktiska tillämpningar. Många verkliga scenarios har icke-negativa mått (längd, tid, mängd o.s.v) och därför relaterar dess matematiska formulering till Perron-Frobenius teori. Teorin är betydande även för linjära dynamiska system, såsom Markov-kedjor, eftersom den avgör när, och till vad, en iterativ process konvergerar. Det resultatet är i sin tur den underliggande teorin bakom algoritmen PageRank som utvecklades av Google år 1998. Vi kommer se exempel på alla dessa tillämpningar i kapitel fyra och fem, där vi speciellt intresserar oss för olika typer av Markov-kedjor. Teorin i den här artikeln kan hittas i många böcker. Det mesta av materialet som presenteras här har hämtats från Horn-Johnson [5], Meyer [9] och Shapiro [10]. Däremot är alla satser och bevis formulerade på mitt eget sätt och alla exempel, samt illustrationer, har jag skapat själv, om inget annat sägs.
|
2 |
Mining of Textual Data from the Web for Speech Recognition / Mining of Textual Data from the Web for Speech RecognitionKubalík, Jakub January 2010 (has links)
Prvotním cílem tohoto projektu bylo prostudovat problematiku jazykového modelování pro rozpoznávání řeči a techniky pro získávání textových dat z Webu. Text představuje základní techniky rozpoznávání řeči a detailněji popisuje jazykové modely založené na statistických metodách. Zvláště se práce zabývá kriterii pro vyhodnocení kvality jazykových modelů a systémů pro rozpoznávání řeči. Text dále popisuje modely a techniky dolování dat, zvláště vyhledávání informací. Dále jsou představeny problémy spojené se získávání dat z webu, a v kontrastu s tím je představen vyhledávač Google. Součástí projektu byl návrh a implementace systému pro získávání textu z webu, jehož detailnímu popisu je věnována náležitá pozornost. Nicméně, hlavním cílem práce bylo ověřit, zda data získaná z Webu mohou mít nějaký přínos pro rozpoznávání řeči. Popsané techniky se tak snaží najít optimální způsob, jak data získaná z Webu použít pro zlepšení ukázkových jazykových modelů, ale i modelů nasazených v reálných rozpoznávacích systémech.
|
Page generated in 0.0296 seconds